А. Ларин. Тренировочный вариант № 345.
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.
Версия для печати и копирования в MS Word
а) Решите уравнение
б) Укажите корни этого уравнения, принадлежащие отрезку
На следующей странице вам будет предложено проверить их самостоятельно.
Плоскость α проходит через середины двух противоположных ребер треугольной пирамиды и параллельна медиане одной из ее граней.
а) Докажите, что среди медиан граней этой пирамиды в точности две являются параллельными к плоскости α.
б) Найдите площадь сечения данной пирамиды плоскостью α, если эти медианы перпендикулярны друг другу и равны 2.
На следующей странице вам будет предложено проверить их самостоятельно.
Решите неравенство
На следующей странице вам будет предложено проверить их самостоятельно.
В треугольнике ABC на сторонах AB и BC заданы соответственно точки M и N такие, что AM = MB, BN : NC = 1 : 2. Отрезки CM и AN пересекаются в точке O.
а) Докажите, что расстояние от точки O до прямой AC равно где BH высота треугольника ABC.
б) Найдите расстояние от точки O до прямой AC, если ∠BAC = 30°, ∠BCA = 45°, AC = 8.
На следующей странице вам будет предложено проверить их самостоятельно.
В июле 2026 года планируется взять кредит на пять лет в размере S тыс.рублей. Условия его возврата таковы:
— каждый январь долг возрастает на 30% по сравнению с концом предыдущего года;
— с февраля по июнь каждого года необходимо выплатить одним платежом часть долга;
— в июле 2027, 2028 и 2029 годов долг остается равным S тыс. рублей;
— выплаты в 2030 и 2031 годах равны по 338 тыс.рублей;
— к июлю 2031 года долг будет выплачен полностью.
Найдите общую сумму выплат за пять лет.
На следующей странице вам будет предложено проверить их самостоятельно.
Найдите все значения параметра а, при которых уравнения и
равносильны.
На следующей странице вам будет предложено проверить их самостоятельно.
В школах № 1 и № 2 учащиеся писали тест. Из каждой школы тест писали не меньше двух учащихся. Каждый учащийся, писавший тест, набрал натуральное количество баллов. Оказалось, что в каждой школе средний балл за тест был целым числом, причем в школе № 1 средний балл равнялся 18. Один из учащихся, писавших тест, перешел из школы № 1 в школу № 2, а средние баллы за тест были пересчитаны в обеих школах. В результате средний балл в школе № 1 вырос на 10%.
а) Сколько учащихся могло писать тест в школе № 1 изначально?
б) В школе № 1 все писавшие тест набрали разное количество баллов. Какое наибольшее количество баллов мог набрать учащийся этой школы?
в) Известно, что изначально в школе № 2 писали тест более 10 учащихся и после перехода одного учащегося в эту школу и пересчета баллов средний балл в школе № 2 также вырос на 10%. Какое наименьшее количество учащихся могло писать тест в школе № 2 изначально?
На следующей странице вам будет предложено проверить их самостоятельно.