Задания
Версия для печати и копирования в MS Word
Спрятать решение

Ре­ше­ние.

Пре­об­ра­зу­ем не­ра­вен­ство, ис­поль­зуя метод ра­ци­о­на­ли­за­ции:

 левая круг­лая скоб­ка левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 4 конец ар­гу­мен­та пра­вая круг­лая скоб­ка минус левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: x в квад­ра­те плюс 3x плюс 4 конец ар­гу­мен­та пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка умно­жить на левая круг­лая скоб­ка |x| минус 5 пра­вая круг­лая скоб­ка \geqslant0 рав­но­силь­но левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 4 конец ар­гу­мен­та минус ко­рень из: на­ча­ло ар­гу­мен­та: x в квад­ра­те плюс 3x плюс 4 конец ар­гу­мен­та пра­вая круг­лая скоб­ка умно­жить на левая круг­лая скоб­ка |x| минус 5 пра­вая круг­лая скоб­ка \leqslant0 рав­но­силь­но

 

 рав­но­силь­но си­сте­ма вы­ра­же­ний левая круг­лая скоб­ка x плюс 4 минус левая круг­лая скоб­ка x в квад­ра­те плюс 3x плюс 4 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x в квад­ра­те минус 25 пра­вая круг­лая скоб­ка \leqslant0,x плюс 4\geqslant0,x в квад­ра­те плюс 3x плюс 4\geqslant0 конец си­сте­мы . рав­но­силь­но си­сте­ма вы­ра­же­ний левая круг­лая скоб­ка минус x в квад­ра­те минус 2x пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 5 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 5 пра­вая круг­лая скоб­ка \leqslant0,x\geqslant минус 4 конец си­сте­мы . рав­но­силь­но

 

 рав­но­силь­но си­сте­ма вы­ра­же­ний x левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 5 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 5 пра­вая круг­лая скоб­ка \geqslant0,x\geqslant минус 4 конец си­сте­мы . рав­но­силь­но со­во­куп­ность вы­ра­же­ний минус 2 мень­ше или равно x\leqslant0,x\geqslant5. конец со­во­куп­но­сти .

Ответ:  левая квад­рат­ная скоб­ка минус 2; 0 пра­вая квад­рат­ная скоб­ка \cup левая квад­рат­ная скоб­ка 5; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка .

Спрятать критерии
Критерии проверки:

Кри­те­рии оце­ни­ва­ния вы­пол­не­ния за­да­нияБаллы
Обос­но­ван­но по­лу­чен вер­ный ответ2
Обос­но­ван­но по­лу­чен ответ, от­ли­ча­ю­щий­ся от вер­но­го ис­клю­че­ни­ем точек,

ИЛИ

по­лу­чен не­вер­ный ответ из-за вы­чис­ли­тель­ной ошиб­ки, но при этом име­ет­ся вер­ная по­сле­до­ва­тель­ность всех шагов ре­ше­ния

1
Ре­ше­ние не со­от­вет­ству­ет ни од­но­му из кри­те­ри­ев, пе­ре­чис­лен­ных выше.0
Мак­си­маль­ный балл2
Источник: А. Ларин. Тре­ни­ро­воч­ный ва­ри­ант № 345
Классификатор алгебры: Ир­ра­ци­о­наль­ные не­ра­вен­ства, Не­ра­вен­ства с мо­ду­ля­ми, Не­ра­вен­ства сме­шан­но­го типа, Об­ласть опре­де­ле­ния не­ра­вен­ства
Методы алгебры: Метод ин­тер­ва­лов, Ра­ци­о­на­ли­за­ция не­ра­венств. Корни, Ра­ци­о­на­ли­за­ция не­ра­венств. Мо­ду­ли, Ра­ци­о­на­ли­за­ция не­ра­венств. Сте­пе­ни