Вариант № 34082587

ЕГЭ по математике 25.07.2020. Резервная волна. Вариант 1

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
1
Тип 12 № 548851

а) Решите уравнение  дробь: числитель: 1, знаменатель: синус в квадрате x конец дроби плюс дробь: числитель: 1, знаменатель: синус x конец дроби минус 2=0.

б) Укажите корни этого уравнения, принадлежащие отрезку  левая квадратная скобка дробь: числитель: 3 Пи , знаменатель: 2 конец дроби ; 3 Пи правая квадратная скобка .


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

2
Тип 13 № 548852

В правильной треугольной призме АВСА1В1С1 сторона АВ основания равна 8, а боковое ребро АА1 равно 7. На ребре СС1 отмечена точка М, причем СМ = 1.

а) Точки О и О1 — центры окружностей, описанных около треугольников АВС и А1В1С1 соответственно. Докажите, что прямая ОО1 содержит точку пересечения медиан треугольника АВМ.

б) Найдите расстояние от точки А1 до плоскости АВМ.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

3
Тип 14 № 548853

Решите неравенство 45 в степени x умножить на 27 минус 27 в степени (x плюс 1) минус 12 умножить на 15 в степени (x) плюс 12 умножить на 9 в степени x плюс 5 в степени x минус 3 в степени x меньше или равно 0.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

4
Тип 16 № 548854

Биссектриса прямого угла прямоугольного треугольника АВС вторично пересекает окружность, описанную около этого треугольника, в точке L. Прямая, проходящая через точку L и середину N гипотенузы АВ, пересекает катет ВС в точке М.

а) Докажите,  \angle BML= \angle BAC

б) Найдите площадь треугольника АВС, если AB = 20 и CM=3 корень из (5)


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

5
Тип 15 № 548855

Вклад планируется открыть на четыре года. Первоначальный вклад составляет целое число миллионов рублей. В конце каждого года банк увеличивает вклад на 10% по сравнению с его размером в начале года. Кроме этого, в начале третьего и четвертого годов вкладчик ежегодно пополняет вклад на 10 млн рублей. Найдите наибольший размер первоначального вклада, при котором банк за четыре года начислит на вклад меньше 15 млн рублей.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

6
Тип 17 № 548856

Найдите все значения параметра a, при каждом из которых система

 система выражений x в квадрате плюс y в квадрате =2x плюс 2y,x в квадрате плюс y в квадрате =2(1 плюс a)x плюс 2(1 минус a)y минус 2a в квадрате конец системы .

имеет ровно два различных решения.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

7
Тип 18 № 548857

По кругу стоят несколько детей, среди которых есть хотя бы два мальчика и хотя бы две девочки. У каждого из детей есть натуральное число конфет. У любых двух мальчиков одинаковое число конфет, а у любых двух девочек — разное. По команде каждый отдал соседу справа четверть своих конфет. После этого у любых двух девочек оказалось одинаковое число конфет, а у любых двух мальчиков — разное. Известно, что каждый из детей отдал натуральное число конфет.

а) Может ли мальчиков быть ровно столько же, сколько девочек?

б) Может ли мальчиков быть больше, чем девочек?

в) Пусть девочек вдвое больше, чем мальчиков. Может ли у всех детей суммарно быть 328 конфет?


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
Завершить тестирование, свериться с ответами, увидеть решения.