ЕГЭ по математике 25.07.2020. Основная волна, резервный день. Вариант А. Ларина
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.
Версия для печати и копирования в MS Word
а) Решите уравнение
б) Укажите корни этого уравнения, принадлежащие отрезку
На следующей странице вам будет предложено проверить их самостоятельно.
В правильной треугольной призме АВСА1В1С1 сторона АВ основания равна 8, а боковое ребро АА1 равно 7. На ребре СС1 отмечена точка М, причем СМ = 1.
а) Точки О и О1 — центры окружностей, описанных около треугольников АВС и А1В1С1 соответственно. Докажите, что прямая ОО1 содержит точку пересечения медиан треугольника АВМ.
б) Найдите расстояние от точки А1 до плоскости АВМ.
На следующей странице вам будет предложено проверить их самостоятельно.
Решите неравенство
На следующей странице вам будет предложено проверить их самостоятельно.
Биссектриса прямого угла прямоугольного треугольника АВС вторично пересекает окружность, описанную около этого треугольника, в точке L. Прямая, проходящая через точку L и середину N гипотенузы АВ, пересекает катет ВС в точке М.
а) Докажите,
б) Найдите площадь треугольника АВС, если AB = 20 и
На следующей странице вам будет предложено проверить их самостоятельно.
Вклад планируется открыть на четыре года. Первоначальный вклад составляет целое число миллионов рублей. В конце каждого года банк увеличивает вклад на 10% по сравнению с его размером в начале года. Кроме этого, в начале третьего и четвертого годов вкладчик ежегодно пополняет вклад на
На следующей странице вам будет предложено проверить их самостоятельно.
Найдите все значения параметра a, при каждом из которых система
имеет ровно два различных решения.
На следующей странице вам будет предложено проверить их самостоятельно.
По кругу стоят несколько детей, среди которых есть хотя бы два мальчика и хотя бы две девочки. У каждого из детей есть натуральное число конфет. У любых двух мальчиков одинаковое число конфет, а у любых двух девочек — разное. По команде каждый отдал соседу справа четверть своих конфет. После этого у любых двух девочек оказалось одинаковое число конфет, а у любых двух мальчиков — разное. Известно, что каждый из детей отдал натуральное число конфет.
а) Может ли мальчиков быть ровно столько же, сколько девочек?
б) Может ли мальчиков быть больше, чем девочек?
в) Пусть девочек вдвое больше, чем мальчиков. Может ли у всех детей суммарно быть 328 конфет?
На следующей странице вам будет предложено проверить их самостоятельно.