А. Ларин. Тренировочный вариант № 296.
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.
Версия для печати и копирования в MS Word
а) Решите уравнение
б) Найдите корни этого уравнения, по абсолютной величине не превышающие
На следующей странице вам будет предложено проверить их самостоятельно.
Объем куба ABCDA1B1C1D1 с нижним основанием ABCD равен 27. Над плоскостью верхнего основания отмечена точка E такая, что и
а) Докажите, что плоскость ABB1 проходит через точку E.
б) Найдите расстояние от точки D1 до плоскости EBC, если объем EA1B1C1 в 2 раза меньше объема EBCC1.
На следующей странице вам будет предложено проверить их самостоятельно.
Решите неравенство:
На следующей странице вам будет предложено проверить их самостоятельно.
Квадраты ABCD и A1B1C1D1 (вершины названы по часовой стрелке) совпадают вершинами C и B1. Точки O и O1 — центры квадратов.
а) Докажите, что прямая OO1 пересекает отрезки A1B и C1D под одинаковыми углами.
б) Найдите OO1, если
На следующей странице вам будет предложено проверить их самостоятельно.
Наш добрый герой В. взял в банке кредит в размере 20 192 020 рублей по очень знакомой схеме:
— в конце очередного месяца пользования кредитом банк начисляет проценты за пользование заемными средствами по специальной ставке данного варианта 2,96%;
— в этот же день клиент выплачивает часть долга и сумму начисленных процентов;
— после выплаты долг должен быть на одну и ту же величину меньше долга на конец предыдущего месяца.
Но дальше все пошло не по сценарию. Вкладчик решил каждый месяц, начиная с первого, платить банку сверх прочего дополнительную сумму на погашение долга, при этом долг по‐прежнему ежемесячно уменьшался на одну и ту же величину (бóльшую, чем планировалось изначально) до полного погашения. В итоге срок кредита сократился на 52%. На какое наименьшее число процентов могла уменьшиться при этом переплата банку?
На следующей странице вам будет предложено проверить их самостоятельно.
Найдите значения параметра a, при которых система
имеет единственное решение.
На следующей странице вам будет предложено проверить их самостоятельно.
Саша придумала уравнение n3 + 13n = k3 + 273.
а) Может ли данное уравнение иметь натуральные решения при k = 21?
б) Может ли данное уравнение иметь натуральные решения при n ≥ 2020?
в) Найдите все пары (n; k) натуральных чисел, удовлетворяющих уравнению.
На следующей странице вам будет предложено проверить их самостоятельно.