Типовые тестовые задания по математике под редакцией И. В. Ященко, 2017. Задания С2, C4.
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.
Версия для печати и копирования в MS Word
| Время | |
| Прошло | 0:00:00 |
| Осталось | 3:55:00 |
Ребро SA пирамиды SABC перпендикулярно плоскости основания ABC.
а) Докажите, что высота пирамиды, проведённая из точки A, делится плоскостью, проходящей через середины рёбер AB, AC и SA, пополам.
б) Найдите расстояние от вершины A до этой плоскости, если AB = AC = 5,
На следующей странице вам будет предложено проверить их самостоятельно.
В правильной треугольной призме ABCA1B1C1 все рёбра равны 1.
а) Докажите, что прямая AB1 параллельна прямой, проходящей через середины отрезков AC и BC1.
б) Найдите косинус угла между прямыми AB1 и BC1.
На следующей странице вам будет предложено проверить их самостоятельно.
В правильной шестиугольной призме ABCDEFA1B1C1D1E1F1 стороны основания равны 5, а боковые рёбра равны 11.
а) Докажите, что прямые CA1 и C1D1 перпендикулярны.
б) Найдите площадь сечения призмы плоскостью, проходящей через вершины C, A1 и F1.
На следующей странице вам будет предложено проверить их самостоятельно.
Окружность с центром O вписана в угол, равный 60°. Окружность большего радиуса с центром O1 также вписана в этот угол и проходит через точку O.
а) Докажите, что радиус второй окружности вдвое больше радиуса первой.
б) Найдите длину общей хорды этих окружностей, если известно, что радиус первой окружности равен
На следующей странице вам будет предложено проверить их самостоятельно.
Точки B1 и C1 лежат на сторонах соответственно AC и AB треугольника ABC, причём AB1 : B1C = AC1 : C1B. Прямые BB1 и CC1 пересекаются в точке O.
а) Докажите, что прямая AO делит пополам сторону BC.
б) Найдите отношение площади четырёхугольника AB1OC1 к площади треугольника ABC, если известно, что AB1 : B1C = AC1 : C1B = 1 : 4.
На следующей странице вам будет предложено проверить их самостоятельно.
На сторонах AC и BC треугольника ABC вне треугольника построены квадраты ACDE и BFKC. Точка M — середина стороны AB.
а) Докажите, что
б) Найдите расстояния от точки M до центров квадратов, если и
На следующей странице вам будет предложено проверить их самостоятельно.
На катетах AC и BC прямоугольного треугольника ABC вне треугольника построены квадраты ACDE и BFKC. Точка M — середина гипотенузы AB, H — точка пересечения прямых
а) Докажите, что CMDK.
б) Найдите MH, если известно, что катеты треугольника ABC равны 130 и 312.
На следующей странице вам будет предложено проверить их самостоятельно.