Заголовок: Задания 18 (С6) ЕГЭ 2014
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕГЭ — математика профильная
Вариант № 10527770

Задания 18 (С6) ЕГЭ 2014

1.  
i

Най­ди­те все зна­че­ния a, при ко­то­рых урав­не­ние

 левая круг­лая скоб­ка левая круг­лая скоб­ка a минус 2 пра­вая круг­лая скоб­ка x в квад­ра­те плюс 6x пра­вая круг­лая скоб­ка в квад­ра­те минус 4 левая круг­лая скоб­ка левая круг­лая скоб­ка a минус 2 пра­вая круг­лая скоб­ка x в квад­ра­те плюс 6x пра­вая круг­лая скоб­ка плюс 4 минус a в квад­ра­те =0

имеет ровно два ре­ше­ния.

2.  
i

Най­ди­те все зна­че­ния a, при ко­то­рых урав­не­ние

 левая круг­лая скоб­ка тан­генс x плюс 6 пра­вая круг­лая скоб­ка в квад­ра­те минус левая круг­лая скоб­ка a в квад­ра­те плюс 2a плюс 8 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка тан­генс x плюс 6 пра­вая круг­лая скоб­ка плюс a в квад­ра­те левая круг­лая скоб­ка 2a плюс 8 пра­вая круг­лая скоб­ка =0

имеет на от­рез­ке  левая квад­рат­ная скоб­ка 0; дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка ровно два ре­ше­ния.

3.  
i

Най­ди­те все зна­че­ния па­ра­мет­ра a, при ко­то­рых для лю­бо­го дей­стви­тель­но­го x вы­пол­не­но не­ра­вен­ство

|3 синус x плюс a в квад­ра­те минус 22| плюс |7 синус x плюс a плюс 12| мень­ше или равно 11 синус x плюс |a в квад­ра­те плюс a минус 20| плюс 11.

4.  
i

Най­ди­те все зна­че­ния па­ра­мет­ра a, при ко­то­рых для лю­бо­го дей­стви­тель­но­го x вы­пол­не­но не­ра­вен­ство

14 ко­си­нус x минус | 5 ко­си­нус x плюс a в квад­ра­те минус 44 | минус | 4 ко­си­нус x плюс a минус 3| плюс | a в квад­ра­те плюс a минус 56 | плюс 14 боль­ше или равно 0.

5.  
i

Най­ди­те все зна­че­ния a, при ко­то­рых урав­не­ние

 ко­рень из: на­ча­ло ар­гу­мен­та: x в сте­пе­ни 4 плюс левая круг­лая скоб­ка a минус 5 пра­вая круг­лая скоб­ка в сте­пе­ни 4 конец ар­гу­мен­та =|x плюс a минус 5| плюс |x минус a плюс 5|

имеет един­ствен­ное ре­ше­ние.

6.  
i

Най­ди­те все зна­че­ния a, при ко­то­рых урав­не­ние

 ко­рень из: на­ча­ло ар­гу­мен­та: x в сте­пе­ни 4 плюс левая круг­лая скоб­ка a минус 2 пра­вая круг­лая скоб­ка в сте­пе­ни 4 конец ар­гу­мен­та =|x плюс a минус 2| плюс |x минус a плюс 2|

имеет един­ствен­ное ре­ше­ние.

7.  
i

Най­ди­те все зна­че­ния a, при ко­то­рых любое ре­ше­ние урав­не­ния

4 ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 3,5x минус 2,5 конец ар­гу­мен­та плюс 3 ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 2 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 3x минус 1 пра­вая круг­лая скоб­ка плюс 2a=0

при­над­ле­жит от­рез­ку  левая квад­рат­ная скоб­ка 1;3 пра­вая квад­рат­ная скоб­ка .

8.  
i

Най­ди­те все зна­че­ния a, при ко­то­рых любое ре­ше­ние урав­не­ния

3 ко­рень 5 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 6,2x минус 5,2 конец ар­гу­мен­та плюс 4 ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 5 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 4x плюс 1 пра­вая круг­лая скоб­ка плюс 5a=0

при­над­ле­жит от­рез­ку  левая квад­рат­ная скоб­ка 1;6 пра­вая квад­рат­ная скоб­ка .

9.  
i

Най­ди­те все зна­че­ния a, при ко­то­рых урав­не­ние

 левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 8 левая круг­лая скоб­ка x плюс a пра­вая круг­лая скоб­ка минус ло­га­рифм по ос­но­ва­нию 8 левая круг­лая скоб­ка x минус a пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка в квад­ра­те минус 12a левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 8 левая круг­лая скоб­ка x плюс a пра­вая круг­лая скоб­ка минус ло­га­рифм по ос­но­ва­нию 8 левая круг­лая скоб­ка x минус a пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка плюс 35a в квад­ра­те минус 6a минус 9=0

имеет ровно два ре­ше­ния.

10.  
i

Най­ди­те все зна­че­ния па­ра­мет­ра a, при ко­то­рых урав­не­ние

 левая круг­лая скоб­ка |x плюс 2| плюс |x минус a| пра­вая круг­лая скоб­ка в квад­ра­те минус 5 левая круг­лая скоб­ка |x плюс 2| плюс |x минус a| пра­вая круг­лая скоб­ка плюс 3a левая круг­лая скоб­ка 5 минус 3a пра­вая круг­лая скоб­ка =0

имеет ровно два ре­ше­ния.

11.  
i

Най­ди­те все зна­че­ния па­ра­мет­ра a, при ко­то­рых урав­не­ние

 левая круг­лая скоб­ка |x плюс 7| минус |x минус a| пра­вая круг­лая скоб­ка в квад­ра­те минус 13a левая круг­лая скоб­ка |x плюс 7| минус |x минус a| пра­вая круг­лая скоб­ка плюс 30a в квад­ра­те плюс 21a минус 9=0

имеет ровно два ре­ше­ния.

12.  
i

Най­ди­те все зна­че­ния a, при ко­то­рых урав­не­ние

 левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка x плюс a пра­вая круг­лая скоб­ка минус ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка x минус a пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка в квад­ра­те минус 3a левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка x плюс a пра­вая круг­лая скоб­ка минус ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка x минус a пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка плюс 2a в квад­ра­те минус a минус 1=0

имеет ровно два ре­ше­ния.

13.  
i

Най­ди­те все зна­че­ния a, при ко­то­рых урав­не­ние

 левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 6 левая круг­лая скоб­ка x плюс a пра­вая круг­лая скоб­ка минус ло­га­рифм по ос­но­ва­нию 6 левая круг­лая скоб­ка x минус a пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка в квад­ра­те минус 4a левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 6 левая круг­лая скоб­ка x плюс a пра­вая круг­лая скоб­ка минус ло­га­рифм по ос­но­ва­нию 6 левая круг­лая скоб­ка x минус a пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка плюс 3a в квад­ра­те плюс 4a минус 4=0

имеет ровно два ре­ше­ния.

14.  
i

Най­ди­те все зна­че­ния a, при ко­то­рых урав­не­ние

 синус в сте­пе­ни левая круг­лая скоб­ка 14 пра­вая круг­лая скоб­ка x плюс левая круг­лая скоб­ка a минус 3 синус x пра­вая круг­лая скоб­ка в сте­пе­ни 7 плюс синус в квад­ра­те x плюс a=3 синус x

имеет хотя бы одно ре­ше­ние.

15.  
i

Най­ди­те все зна­че­ния па­ра­мет­ра a, при ко­то­рых урав­не­ние

 левая круг­лая скоб­ка x плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: x минус a конец дроби пра­вая круг­лая скоб­ка в квад­ра­те минус левая круг­лая скоб­ка a плюс 9 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: x минус a конец дроби пра­вая круг­лая скоб­ка плюс 2a левая круг­лая скоб­ка 9 минус a пра­вая круг­лая скоб­ка =0.

имеет ровно 4 ре­ше­ния.