Каталог заданий.
Сечения призм

Пройти тестирование по этим заданиям
Вернуться к каталогу заданий
Версия для печати и копирования в MS Word
1
Тип 14 № 507887
i

В ос­но­ва­нии пра­виль­ной тре­уголь­ной приз­мы ABCA1B1C1 лежит тре­уголь­ник со сто­ро­ной  6. Вы­со­та приз­мы равна  4. Точка  N  — се­ре­ди­на ребра  A1C1.

а)  По­строй­те се­че­ние приз­мы плос­ко­стью BAN.

б)  Най­ди­те пе­ри­метр этого се­че­ния.


Аналоги к заданию № 507887: 507910 510460 Все


2

Ос­но­ва­ни­ем пря­мой че­ты­рех­уголь­ной приз­мы ABCDA'B'C'D' яв­ля­ет­ся квад­рат ABCD со сто­ро­ной 3 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , вы­со­та приз­мы равна 2 ко­рень из: на­ча­ло ар­гу­мен­та: 7 конец ар­гу­мен­та . Точка K  — се­ре­ди­на ребра BB'. Через точки K и С' про­ве­де­на плос­кость α, па­рал­лель­ная пря­мой BD'.

а)  До­ка­жи­те, что се­че­ние приз­мы плос­ко­стью α яв­ля­ет­ся рав­но­бед­рен­ным тре­уголь­ни­ком.

б)  Най­ди­те пе­ри­метр тре­уголь­ни­ка, яв­ля­ю­ще­го­ся се­че­ни­ем приз­мы плос­ко­стью α.


Аналоги к заданию № 509821: 514244 Все


3
Тип 14 № 510655
i

В пра­виль­ной четырёхуголь­ной приз­ме ABCDA1B1C1D1 сто­ро­на ос­но­ва­ния равна 11, а бо­ко­вое ребро AA1  =  7. Точка K при­над­ле­жит ребру B1C1 и делит его в от­но­ше­нии 8 : 3, счи­тая от вер­ши­ны B1.

а)  До­ка­жи­те, что точки A и C рав­но­уда­ле­ны от плос­ко­сти, про­хо­дя­щей через точки B, D и K.

б)  Най­ди­те пло­щадь се­че­ния этой приз­мы плос­ко­стью, про­хо­дя­щей через точки B, D и K.


4

В пра­виль­ной четырёхуголь­ной приз­ме ABCDA1B1C1D1 сто­ро­на ос­но­ва­ния равна 20, а бо­ко­вое ребро AA1  =  7. Точка M при­над­ле­жит ребру A1D1 и делит его в от­но­ше­нии 2 : 3, счи­тая от вер­ши­ны D1.

а)  До­ка­жи­те, что точки A и C рав­но­уда­ле­ны от плос­ко­сти, про­хо­дя­щей через точки B, D и M.

б)  Най­ди­те пло­щадь се­че­ния этой приз­мы плос­ко­стью, про­хо­дя­щей через точки B, D и M.


5

Дана пра­виль­ная приз­ма ABCA1B1C1, у ко­то­рой сто­ро­на ос­но­ва­ния AB  =  4, а бо­ко­вое ребро AA1  =  9. Точка  M  — се­ре­ди­на ребра AC, а на ребре AA1 взята точка T так, что AT  =  5.

а)  До­ка­жи­те, что плос­кость BB1M делит от­ре­зок C1T по­по­лам.

б)  Плос­кость BTC1 делит от­ре­зок MB1 на две части. Най­ди­те длину мень­шей из них.


Пройти тестирование по этим заданиям