№№ заданий Пояснения Ответы Ключ Добавить инструкцию Критерии
Источник Классификатор базовой части Классификатор планиметрии Классификатор стереометрии Методы алгебры Методы геометрии Раздел Раздел кодификатора ФИПИ/Решу ЕГЭ Справка
PDF-версия PDF-версия (вертикальная) PDF-версия (крупный шрифт) PDF-версия (с большим полем) Версия для копирования в MS Word
Вариант № 6493435

А. Ларин: Тренировочный вариант № 90.

1.

а) Решите уравнение

б) Укажите корни этого уравнения принадлежащие отрезку

2.

В основании прямоугольного параллелепипеда ABCDA1B1C1D1 лежит квадрат ABCD со стороной, равной 3. Боковое ребро параллелепипеда равно 4. На ребре AA1 отмечена точка M так, что AM : A1M = 1 : 3.

а) Постройте сечение параллелепипеда плоскостью BMD1.

б) Найдите площадь полученного сечения.

3.

Решите неравенство

4.

В треугольнике ABC точка О — центр описанной окружности, точка K лежит на отрезке BC, причем BК = КC. Описанная около треугольника BKO окружность пересекает AB в точке T.

а) Докажите, что TK || АС.

б) Найдите площадь треугольника ABC, если известно, что угол BOK равен 30°, КT = 8, ВТ = 6.

5.

Найдите все значения а, при каждом из которых уравнение имеет ровно три различных корня.

6.

На листе бумаги в строчку записаны 11 единиц.

а) Докажите, что между этими единицами можно расставить знаки сложения, умножения и скобки так, что после выполнения действий получится число, делящееся на 54.

б) Докажите, что если единицы, стоящие на четных местах, заменить на семерки, все равно между числами полученного набора можно расставить знаки сложения, умножения и скобки так, что после выполнения действий получится число, делящееся на 54.

в) Докажите, что между любыми 11 натуральными числами можно расставить знаки сложения, умножения и скобки так, что после выполнения действий получится число, делящееся на 54.