СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Математика профильного уровня
≡ математика
сайты - меню - вход - новости


Вариант № 5410692

А. Ларин: Тре­ни­ро­воч­ный вариант № 36.

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
1
Задания Д5 C1 № 506056

а) Решите уравнение

б) Найдите все корни на промежутке


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

2
Задания Д7 C2 № 506057

В основании прямой призмы ABCA1B1C1 лежит равнобедренный треугольник ABC с основанием AB = 10. Найдите расстояние между прямой CC1 и прямой, проходящей через точку A и параллельной прямой CM1, где M1 — середина стороны A1B1.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

3
Задания Д10 C3 № 506058

Решите систему неравенств:


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

4
Задания Д14 C6 № 506060

Найдите все значения параметра a, при которых уравнение

имеет ровно два корня.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

5
Задания Д16 C7 № 506061

На плоскости даны 8 отрезков. Длина каждого отрезка является натуральным числом, не превосходящим 20. Пусть n – число различных треугольников, которые можно составить из этих отрезков. Один и тот же отрезок может использоваться для разных треугольников, но не может использоваться дважды для одного треугольника.

а) Может ли n = 60?

б) Может ли n = 55?

в) Найдите наименьшее возможное значение n, если среди данных отрезков нет трех равных.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
Завершить тестирование, свериться с ответами, увидеть решения.