Вариант № 5409843

А. Ларин: Тренировочный вариант № 60.

При вы­пол­не­нии за­да­ний с крат­ким от­ве­том впи­ши­те в поле для от­ве­та цифру, ко­то­рая со­от­вет­ству­ет но­ме­ру пра­виль­но­го от­ве­та, или число, слово, по­сле­до­ва­тель­ность букв (слов) или цифр. Ответ сле­ду­ет за­пи­сы­вать без про­бе­лов и каких-либо до­пол­ни­тель­ных сим­во­лов. Дроб­ную часть от­де­ляй­те от целой де­ся­тич­ной за­пя­той. Еди­ни­цы из­ме­ре­ний пи­сать не нужно.


Если ва­ри­ант задан учи­те­лем, вы мо­же­те впи­сать или за­гру­зить в си­сте­му от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Учи­тель уви­дит ре­зуль­та­ты вы­пол­не­ния за­да­ний с крат­ким от­ве­том и смо­жет оце­нить за­гру­жен­ные от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Вы­став­лен­ные учи­те­лем баллы отоб­ра­зят­ся в вашей ста­ти­сти­ке.


Версия для печати и копирования в MS Word
1
Тип Д8 C1 № 505712
i

а)  Ре­ши­те урав­не­ние  левая круг­лая скоб­ка 1 плюс 2 синус x пра­вая круг­лая скоб­ка умно­жить на синус x= синус 2x плюс ко­си­нус x;

б)  Най­ди­те все корни на про­ме­жут­ке  левая квад­рат­ная скоб­ка минус дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 2 конец дроби ; Пи пра­вая квад­рат­ная скоб­ка .


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

2
Тип Д10 C2 № 505713
i

Шар, ра­ди­ус ко­то­ро­го равен 2, впи­сан в пра­виль­ную че­ты­рех­уголь­ную пи­ра­ми­ду SABCD с вер­ши­ной S. Вто­рой шар ра­ди­у­са 1 ка­са­ет­ся пер­во­го шара, ос­но­ва­ния пи­ра­ми­ды и бо­ко­вых гра­ней BSC и CSD. Най­ди­те объем пи­ра­ми­ды.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

3
Тип Д13 C3 № 505714
i

Ре­ши­те си­сте­му не­ра­венств  си­сте­ма вы­ра­же­ний  новая стро­ка дробь: чис­ли­тель: \left|x минус 5 | минус 1, зна­ме­на­тель: 2\left| x минус 6 | минус 4 конец дроби мень­ше или равно 1,  новая стро­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби \log _2 левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби мень­ше или равно \log _ дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби ко­рень из: на­ча­ло ар­гу­мен­та: x минус 5 конец ар­гу­мен­та .  конец си­сте­мы .


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

4
Тип Д15 C4 № 505715
i

Про­дол­же­ние общей хорды AB двух пе­ре­се­ка­ю­щих­ся окруж­но­стей ра­ди­у­сов 8 и 2 пе­ре­се­ка­ет их общую ка­са­тель­ную в точке C, точка A лежит между B и C, а M и N  — точки ка­са­ния.

а)  До­ка­жи­те, что от­но­ше­ние рас­сто­я­ний от точки C до пря­мых AM и AN равно  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби .

б)  Най­ди­те ра­ди­ус окруж­но­сти, про­хо­дя­щей через точки A, M и N.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

5
Тип Д17 C6 № 505716
i

Най­ди­те все зна­че­ния па­ра­мет­ра a, при каж­дом из ко­то­рых урав­не­ние

 синус в квад­ра­те x плюс левая круг­лая скоб­ка a минус 2 пра­вая круг­лая скоб­ка в квад­ра­те синус x плюс a левая круг­лая скоб­ка a минус 2 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка a минус 3 пра­вая круг­лая скоб­ка =0

имеет на от­рез­ке  левая квад­рат­ная скоб­ка 0;2 Пи пра­вая квад­рат­ная скоб­ка ровно три корня.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

6
Тип Д19 C7 № 505717
i

Дана бес­ко­неч­ная по­сле­до­ва­тель­ность чисел x_1,x_2,x_3,\ldots,x_k,\ldots левая круг­лая скоб­ка k при­над­ле­жит N пра­вая круг­лая скоб­ка , в ко­то­рой при каж­дом k член по­сле­до­ва­тель­но­сти xk яв­ля­ет­ся кор­нем урав­не­ния x в квад­ра­те минус 2 умно­жить на 3 в сте­пе­ни k умно­жить на x плюс 9 в сте­пе­ни k =0.

1.  Най­ди­те наи­боль­ший по­ряд­ко­вый номер k члена по­сле­до­ва­тель­но­сти такой, что в де­ся­тич­ной за­пи­си числа x ис­поль­зу­ет­ся не более семи цифр.

2.  Ука­жи­те наи­мень­шее на­ту­раль­ное число N, среди де­ли­те­лей ко­то­ро­го со­дер­жит­ся ровно 8 чле­нов дан­ной по­сле­до­ва­тель­но­сти.

3.  Су­ще­ству­ет ли такое на­ту­раль­ное число n, что сумма n иду­щих под­ряд

чле­нов этой по­сле­до­ва­тель­но­сти равна не­ко­то­ро­му члену этой по­сле­до­ва­тель­но­сти.

4.  Су­ще­ству­ет ли набор из 2012 чле­нов дан­ной по­сле­до­ва­тель­но­сти таких, что ни­ка­кая сумма не­сколь­ких из этих чисел не яв­ля­ет­ся пол­ным квад­ра­том.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.
Завершить работу, свериться с ответами, увидеть решения.