А. Ларин. Тренировочный вариант № 359.
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.
Версия для печати и копирования в MS Word
а) Решите уравнение
б) Укажите корни этого уравнения, принадлежащие отрезку
На следующей странице вам будет предложено проверить их самостоятельно.
В правильной четырехугольной пирамиде SABCD на ребрах CD и SC отмечены точки N и K соответственно, причем DN : NC = SK : KC = 1 : 4. Плоскость α содержит прямую KN и параллельна прямой BC.
а) Докажите, что плоскость α параллельна прямой SA.
б) Найдите, в каком отношении плоскость α делит объем пирамиды.
На следующей странице вам будет предложено проверить их самостоятельно.
Решите неравенство
На следующей странице вам будет предложено проверить их самостоятельно.
В начале января 2022 года планируется взять кредит в банке на 4 года на S млн рублей, где S — целое число. Условия его возврата таковы:
— каждый июль долг возрастает на 10% по сравнению с началом текущего года;
— с августа по декабрь каждого года необходимо выплатить часть долга;
— в январе каждого года долг должен составлять часть кредита в соответствии со следующей таблицей:
| Начало года | 2022 | 2023 | 2024 | 2025 | 2026 |
| Долг (в млн рублей) | S | 0,8S | 0,5S | 0,3S | 0 |
Найдите наименьшее значение S, при котором сумма выплат банку за все 4 года составит не менее 10 миллионов рублей.
На следующей странице вам будет предложено проверить их самостоятельно.
На диагонали параллелограмма взяли точку, отличную от её середины. Из неё на все стороны параллелограмма (или их продолжения) опустили перпендикуляры.
а) Докажите, что четырёхугольник, образованный основаниями этих перпендикуляров, является трапецией.
б) Найдите площадь полученной трапеции, если площадь параллелограмма равна 16, а один из его углов равен 60°.
На следующей странице вам будет предложено проверить их самостоятельно.
Найдите все значения параметра a, при каждом из которых уравнение
имеет хотя бы один корень.
На следующей странице вам будет предложено проверить их самостоятельно.
По кругу в некотором порядке по одному разу написаны числа от 9 до 18. Для каждой из десяти пар соседних чисел нашли их наибольший общий делитель.
а) Могло ли получиться так, что все наибольшие общие делители равны 1?
б) Могло ли получиться так, что все наибольшие общие делители попарно различны?
в) Какое наибольшее количество попарно различных наибольших общих делителей могло при этом получиться?
На следующей странице вам будет предложено проверить их самостоятельно.