А. Ларин. Тренировочный вариант № 300
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.
Версия для печати и копирования в MS Word
а) Решите уравнение
б) Укажите корни этого уравнения, принадлежащие отрезку
На следующей странице вам будет предложено проверить их самостоятельно.
Дан куб ABCDA1B1C1D1 с ребром длины 1. Точка Р — середина А1D1, точка Q делит отрезок АВ1 в отношении 2 : 1, считая от вершины А, R — точка пересечения отрезков ВС1 и В1С.
а) Найдите площадь сечения куба плоскостью PQR.
б) Найдите отношение, в котором плоскость сечения делит диагональ АС1 куба.
На следующей странице вам будет предложено проверить их самостоятельно.
Решите неравенство:
На следующей странице вам будет предложено проверить их самостоятельно.
Окружность радиуса касается прямой a в точке А, а прямой b в точке В так, что хорда АВ стягивает дугу окружности в 60°. Прямые a и b пересекаются в точке F. Точка С расположена на луче FA, а точка D — на луче BF так, что AC = BD = 2.
а) Докажите, что треугольник BAD — прямоугольный.
б) Найдите длину медианы треугольника CBD, проведенную из вершины D.
На следующей странице вам будет предложено проверить их самостоятельно.
В контейнер упакованы комплектующие изделия трех типов. Стоимость и вес изделия составляют 400 тыс. руб. и 12 кг для первого типа, 500 тыс. руб. и 16 кг для второго типа, 600 тыс. руб. и 15 кг для третьего типа. Общий вес комплектующих равен 326 кг. Определите минимальную и максимальную возможную суммарную стоимость находящихся в контейнере комплектующих изделий.
На следующей странице вам будет предложено проверить их самостоятельно.
Найдите все значения параметра a, при каждом из которых уравнение
имеет решения.
На следующей странице вам будет предложено проверить их самостоятельно.
Множество А состоит из натуральных чисел. Количество чисел в А больше семи. Наименьшее общее кратное всех чисел в А равно q и никакие два числа в множестве А не являются взаимно простыми. Найдите все числа множества А, если:
а) q = 210, произведение всех чисел из А делится на 1920 и не является квадратом никакого целого числа.
б) q = 390, произведение всех чисел из А не делится на 160 и не является четвертой степенью никакого целого числа.
в) q = 330, произведение всех чисел из А не является четвертой степенью никакого целого числа, а сумма всех чисел из А равна 755.
На следующей странице вам будет предложено проверить их самостоятельно.