А. Ларин. Тренировочный вариант № 256.
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.
Версия для печати и копирования в MS Word
а) Решите уравнение
б) Укажите корни этого уравнения, принадлежащие отрезку
На следующей странице вам будет предложено проверить их самостоятельно.
Апофема правильной пирамиды SABCD равна 2, боковое ребро образует с основанием ABCD угол, равный Точки E, F, K выбраны соответственно на ребрах AB, AD и SC так, что
а) Найдите площадь сечения пирамиды плоскостью EFK.
б) Найдите угол между прямой SD и плоскостью EFK.
На следующей странице вам будет предложено проверить их самостоятельно.
Решите неравенство:
На следующей странице вам будет предложено проверить их самостоятельно.
Точки K и L являются серединами боковых сторон AB и BC равнобедренного треугольника ABC. Точка M расположена на медиане AL так, что Окружность ω с центром в точке M касается прямой AC и пересекает прямую KL в точках P и Q,
а) Найти радиус окружности ω.
б) Найти периметр треугольника ABC.
На следующей странице вам будет предложено проверить их самостоятельно.
Из пункта А, расположенного на берегу реки, вниз по течению отправились две моторные лодки. Скорость течения реки 2 км/ч, собственная скорость «быстрой» лодки на 3 км/ч больше скорости «медленной» лодки. Через некоторое время они повернули обратно, и «быстрая» лодка пришла в пункт А раньше, чем «медленная» на время не меньшее времени, которое лодки шли от начала движения до поворота. Найдите наибольшее целое значение скорости «быстрой» лодки (в км/ч), если собственные скорости лодок больше скорости течения.
На следующей странице вам будет предложено проверить их самостоятельно.
Найдите наибольшее значение параметра a, при котором система
имеет решения.
На следующей странице вам будет предложено проверить их самостоятельно.
В некотором царстве было несколько (более двух) княжеств. Однажды некоторые из этих княжеств объявили себя царствами и разделились каждое на то же самое число княжеств, которое было в самом начале. Затем всё новые и новые княжества из числа прежних и вновь образующихся объявляли себя царствами и делились каждое на то же самое число княжеств, которое было в самом начале.
а) Могло ли сразу после одного из делений общее число княжеств стать равным 102?
б) Могло ли в какой‐то момент времени общее число княжеств стать равным 320, если известно, что сразу после одного из делений общее число княжеств было равно 162?
в) Сколько княжеств было в самом начале, если сразу после какого‐то из делений общее число княжеств стало ровно в 38 раз больше первоначального?
На следующей странице вам будет предложено проверить их самостоятельно.