№№ заданий Пояснения Ответы Ключ Добавить инструкцию Критерии
Источник Классификатор базовой части Классификатор планиметрии Классификатор стереометрии Методы алгебры Методы геометрии Раздел Раздел кодификатора ФИПИ/Решу ЕГЭ Справка
PDF-версия PDF-версия (вертикальная) PDF-версия (крупный шрифт) PDF-версия (с большим полем) Версия для копирования в MS Word
Вариант № 24778155

А. Ларин: Тренировочный вариант № 198.

1.

Дано уравнение  косинус в степени 2 x левая круглая скобка тангенс левая круглая скобка дробь, числитель — 9 Пи , знаменатель — 2 плюс x правая круглая скобка минус 3 тангенс в степени 2 ( Пи минус x) правая круглая скобка = косинус 2x минус 1.

а) Решите уравнение.

б) Найдите корни этого уравнения, принадлежащие отрезку  левая квадратная скобка минус 4; минус 1 правая квадратная скобка .

2.

В основании прямой призмы ABCA_1B_1C_1 лежит равнобедренный треугольник ABC, в котором AB=AC.

а) Докажите, что объем пирамиды A_1BCC_1B_1 составляет  дробь, числитель — 2, знаменатель — 3 объема призмы.

б) Найдите радиус сферы, описанной около пирамиды A_1BCC_1B_1, если известно, что AB=5, BC=6, AA_1=15.

3.

Решите неравенство: 4 умножить на логарифм по основанию 2 (8 минус 2 в степени 1 плюс x в степени 2 ) минус логарифм по основанию 2 в степени 2 (2 в степени 3 минус x в степени 2 минус 2)\le4x в степени 2 плюс 3.

4.

В треугольнике ABC проведена биссектриса BK и на сторонах BA и BC взяты соответственно точки M и P так, что \angle AKM= \angle CKP= дробь, числитель — 1, знаменатель — 2 \angle ABC.

а) Докажите, что прямая AC касается окружности, описанной около треугольника MBP.

б) Найдите радиус окружности, описанной около треугольника MBP, если известно, что AB=10, BC=15, AC=20.

5.

1 мая 2017 г. Татьяна Константиновна положила 10 000 000 рублей в банк сроком на 1 год с ежемесячным начислением процентов и капитализацией под а% годовых. Это означает, что первого числа каждого месяца сумма вклада увеличивается на одно и то же количество процентов, рассчитанное таким образом, что за 12 месяцев она увеличится ровно на а%. Найдите а, если известно, что через 6 месяцев сумма вклада Татьяны Константиновны составила 10 400 000 рублей.

6.

Найдите все значения параметра а, при каждом система

 система выражений y в степени 2 минус 2x в степени 2 плюс xy плюс 9x минус 9=0,ax в степени 2 плюс 2ax минус y минус 3 плюс a=0 конец системы .

имеет ровно четыре различных решения.

7.

Государство Новая Анчурия расположено на острове, имеющем форму круга. В стране 11 городов, расположенных на побережье. Каждый город напрямую соединен с каждым из остальных городов автотрассой.

а) Сколько автотрасс в государстве Новая Анчурия?

б) После наводнения несколько автотрасс в стране закрыли на ремонт. Могло ли оказаться так, что теперь каждый город острова стал напрямую соединен автотрассой ровно с пятью другими городами?

в) Какое наибольшее число автотрасс в Новой Анчурии можно одновременно закрыть на ремонт, чтобы из каждого города можно было добраться на автомобиле до любого другого?