А. Ларин: Тренировочный вариант № 234.
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.
Версия для печати и копирования в MS Word
Дано уравнение
а) Решите уравнение.
б) Найдите корни этого уравнения, принадлежащие отрезку
На следующей странице вам будет предложено проверить их самостоятельно.
В прямоугольном параллелепипеде ABCDA1B1C1D1 АВ = 5, AD = 6, AA1 = 8, точка К — середина ребра DD1.
а) Докажите, что прямые ВС и КС1 перпендикулярны.
б) Найдите отношение объемов, на которые делится прямоугольный параллелепипед плоскостью ВКС1.
На следующей странице вам будет предложено проверить их самостоятельно.
Решите неравенство:
На следующей странице вам будет предложено проверить их самостоятельно.
Серединный перпендикуляр к стороне АВ треугольника АВС пересекает сторону АС в точке D. Окружность с центром О, вписанная в треугольник ADB, касается отрезка AD в точке Р, а прямая ОР пересекает сторону АВ в точке К.
а) Докажите, что около четырехугольника ВDОК можно описать окружность.
б) Найдите радиус этой окружности, если АВ = 10, АС = 8, ВС = 6.
На следующей странице вам будет предложено проверить их самостоятельно.
В июле планируется взять кредит в банке на сумму 4 млн рублей на срок 10 лет.
Условия его возврата таковы:
— каждый январь долг возрастает на r% по сравнению с концом предыдущего года;
— с февраля по июнь необходимо выплатить часть долга;
— в июле каждого года долг должен быть на одну и ту же сумму меньше долга на июль предыдущего года.
Найдите r% , если известно, что наибольший годовой платёж по кредиту составит не более 1,16 млн рублей, а наименьший — не менее 0,476 млн рублей.
На следующей странице вам будет предложено проверить их самостоятельно.
Найдите все значения параметра a, при которых уравнение
имеет хотя бы один корень.
На следующей странице вам будет предложено проверить их самостоятельно.
На доске написан упорядоченный набор из семи различных натуральных чисел. Среднее арифметическое первых четырех и среднее арифметическое последних четырех чисел равно 12.
а) Может ли среднее арифметическое всех чисел равняться 12?
б) Может ли среднее арифметическое всех чисел равняться 8?
в) Найдите наибольшее и наименьшее значения, которые может принимать среднее арифметическое всех чисел.
На следующей странице вам будет предложено проверить их самостоятельно.