А. Ларин: Тренировочный вариант № 180.
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.
Версия для печати и копирования в MS Word
а) Решите уравнение
б) Укажите корни этого уравнения, принадлежащие отрезку
На следующей странице вам будет предложено проверить их самостоятельно.
В основании пирамиды PABC лежит прямоугольный треугольник с катетами АС = 6 и ВС = 8. Прямая РС перпендикулярна плоскости АВС. На ребре АВ отмечена точка К так, что АК : ВК = 9 : 16.
а) Докажите, что прямые РК и АВ перпендикулярны.
б) Найдите отношение радиусов сфер, вписанных в пирамиды РАСК и РВСК, если известно, что РС = 2.
На следующей странице вам будет предложено проверить их самостоятельно.
Решите неравенство
На следующей странице вам будет предложено проверить их самостоятельно.
На стороне АВ треугольника АВС отмечена точка М, отличная от вершин, что МС = АС. Точка Р симметрична точке А относительно прямой ВС.
а) Докажите, что около четырехугольника ВМСР можно описать окружность.
б) Найдите длину отрезка МР, если известно, что АВ = 6, ВС = 5, СА = 3.
На следующей странице вам будет предложено проверить их самостоятельно.
Саша и Паша положили по 100 тыс. руб. в банк под 10% годовых сроком на три года. При этом Паша через год снял n тыс. руб. (n — целое число), а еще через год снова доложил n тыс. руб. на свой счет. При каком наименьшем значении n через три года разность между суммами на счету Саши и Паши окажется не менее 3 тыс. руб.
На следующей странице вам будет предложено проверить их самостоятельно.
Найдите все а, при каждом из которых система
имеет ровно три решения.
На следующей странице вам будет предложено проверить их самостоятельно.
а) Можно ли числа 2, 3, 4, 5, 6, 7, 8, 9, 10 разбить на две группы с одинаковым произведением чисел в этих группах?
б) Можно ли числа 4, 5, 6, 7, 8, 9, 10, 12, 14 разбить на две группы с одинаковым произведением чисел в этих группах?
в) Какое наименьшее количество чисел нужно исключить из набора 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 так, чтобы оставшиеся числа можно было разбить на две группы с одинаковым произведением чисел в этих группах? Приведите пример такого разбиения на группы.
На следующей странице вам будет предложено проверить их самостоятельно.