Вариант № 12574739

Типовые тестовые задания по математике под редакцией И. В. Ященко 2017. Вариант 1. (Часть 2)

При вы­пол­не­нии за­да­ний с крат­ким от­ве­том впи­ши­те в поле для от­ве­та цифру, ко­то­рая со­от­вет­ству­ет но­ме­ру пра­виль­но­го от­ве­та, или число, слово, по­сле­до­ва­тель­ность букв (слов) или цифр. Ответ сле­ду­ет за­пи­сы­вать без про­бе­лов и каких-либо до­пол­ни­тель­ных сим­во­лов. Дроб­ную часть от­де­ляй­те от целой де­ся­тич­ной за­пя­той. Еди­ни­цы из­ме­ре­ний пи­сать не нужно.


Если ва­ри­ант задан учи­те­лем, вы мо­же­те впи­сать или за­гру­зить в си­сте­му от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Учи­тель уви­дит ре­зуль­та­ты вы­пол­не­ния за­да­ний с крат­ким от­ве­том и смо­жет оце­нить за­гру­жен­ные от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Вы­став­лен­ные учи­те­лем баллы отоб­ра­зят­ся в вашей ста­ти­сти­ке.


Версия для печати и копирования в MS Word
1
Тип 13 № 515648
i

а)  Ре­ши­те урав­не­ние  дробь: чис­ли­тель: левая круг­лая скоб­ка тан­генс x плюс ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та пра­вая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 13 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 2 синус в квад­ра­те x пра­вая круг­лая скоб­ка , зна­ме­на­тель: ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 31 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та ко­си­нус x пра­вая круг­лая скоб­ка конец дроби =0.

б)  Най­ди­те все корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 2 конец дроби ; дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка .


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

2

В пра­виль­ной четырёхуголь­ной пи­ра­ми­де SABCD с вер­ши­ной S сто­ро­на ос­но­ва­ния равна 4. Точка L  — се­ре­ди­на ребра SC. Тан­генс угла между пря­мы­ми BL и SA равен  дробь: чис­ли­тель: 2 ко­рень из: на­ча­ло ар­гу­мен­та: 34 конец ар­гу­мен­та , зна­ме­на­тель: 17 конец дроби .

а)  Пусть O  — центр ос­но­ва­ния пи­ра­ми­ды. До­ка­жи­те, что пря­мые BO и LO пер­пен­ди­ку­ляр­ны.

б)  Най­ди­те пло­щадь по­верх­но­сти пи­ра­ми­ды.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

3

Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

4

Окруж­ность с цен­тром O впи­са­на в угол, рав­ный 60°. Окруж­ность боль­ше­го ра­ди­у­са с цен­тром O1 также впи­са­на в этот угол и про­хо­дит через точку O.

а)  До­ка­жи­те, что ра­ди­ус вто­рой окруж­но­сти вдвое боль­ше ра­ди­у­са пер­вой.

б)  Най­ди­те длину общей хорды этих окруж­но­стей, если из­вест­но, что ра­ди­ус пер­вой окруж­но­сти равен 2 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та .


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

5

В двух об­ла­стях есть по 90 ра­бо­чих, каж­дый из ко­то­рых готов тру­дить­ся по 5 часов в сутки на до­бы­че алю­ми­ния или ни­ке­ля. В пер­вой об­ла­сти один ра­бо­чий за час до­бы­ва­ет 0,3 кг алю­ми­ния или 0,1 кг ни­ке­ля. Во вто­рой об­ла­сти для до­бы­чи x кг алю­ми­ния в день тре­бу­ет­ся x2 че­ло­ве­ко-⁠часов труда, а для до­бы­чи y кг ни­ке­ля в день тре­бу­ет­ся y2 че­ло­ве­ко-⁠часов труда.

Для нужд про­мыш­лен­но­сти можно ис­поль­зо­вать или алю­ми­ний, или ни­кель, причём 1 кг алю­ми­ния можно за­ме­нить 1 кг ни­ке­ля. Какую наи­боль­шую сум­мар­ную массу ме­тал­лов можно до­быть в двух об­ла­стях за сутки?


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

6

Най­ди­те все зна­че­ния па­ра­мет­ра а, при каж­дом из ко­то­рых не­ра­вен­ство

\left| дробь: чис­ли­тель: x в квад­ра­те плюс x минус 2a, зна­ме­на­тель: x плюс a конец дроби минус 1| мень­ше или равно 2

не имеет ре­ше­ний на ин­тер­ва­ле (1; 2).

Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

7

Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.
Завершить работу, свериться с ответами, увидеть решения.