Заголовок:
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕГЭ — математика профильная
Вариант № 11793054
1.  
i

Тет­радь стоит 40 руб­лей. Какое наи­боль­шее число таких тет­ра­дей можно будет ку­пить на 750 руб­лей после по­ни­же­ния цены на 10%?

2.  
i

На диа­грам­ме по­ка­зан сред­ний балл участ­ни­ков 10 стран в те­сти­ро­ва­нии уча­щих­ся 8-⁠го клас­са по ма­те­ма­ти­ке в 2007 году (по 1000-⁠балль­ной шкале). Най­ди­те сред­ний балл участ­ни­ков из Бол­га­рии.

3.  
i

На клет­ча­той бу­ма­ге с раз­ме­ром клет­ки 1\times 1 изоб­ражён угол. Най­ди­те тан­генс этого угла.

4.  
i

При про­из­вод­стве в сред­нем на каж­дые 2000 ис­прав­ных на­со­са при­хо­дит­ся 6 не­ис­прав­ных. Най­ди­те ве­ро­ят­ность того, что слу­чай­но вы­бран­ный насос ока­жет­ся не­ис­прав­ным.

Ответ округ­ли­те до ты­сяч­ных.

5.  
i

Най­ди­те ко­рень урав­не­ния  дробь: чис­ли­тель: 1, зна­ме­на­тель: 7x плюс 13 конец дроби = дробь: чис­ли­тель: 1, зна­ме­на­тель: 4x минус 5 конец дроби .

6.  
i

Пло­щадь ромба равна 6. Одна из его диа­го­на­лей в 3 раза боль­ше дру­гой. Най­ди­те мень­шую диа­го­наль.

7.  
i

На ри­сун­ке изоб­ра­жен гра­фик про­из­вод­ной функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка . Най­ди­те абс­цис­су точки, в ко­то­рой ка­са­тель­ная к гра­фи­ку y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка па­рал­лель­на пря­мой y=2x минус 2 или сов­па­да­ет с ней.

8.  
i

Най­ди­те объем мно­го­гран­ни­ка, изоб­ра­жен­но­го на ри­сун­ке (все дву­гран­ные углы мно­го­гран­ни­ка пря­мые).

9.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 81 ко­рень 7 сте­пе­ни из: на­ча­ло ар­гу­мен­та: b конец ар­гу­мен­та конец ар­гу­мен­та , зна­ме­на­тель: ко­рень 14 сте­пе­ни из: на­ча­ло ар­гу­мен­та: b конец ар­гу­мен­та конец дроби при b боль­ше 0.

10.  
i

В ходе рас­па­да ра­дио­ак­тив­но­го изо­то­па его масса умень­ша­ет­ся по за­ко­ну m левая круг­лая скоб­ка t пра­вая круг­лая скоб­ка = m_0 умно­жить на 2 в сте­пе­ни левая круг­лая скоб­ка минус t пра­вая круг­лая скоб­ка /T, где m_0 − на­чаль­ная масса изо­то­па, t − время, про­шед­шее от на­чаль­но­го мо­мен­та, T − пе­ри­од по­лу­рас­па­да. В на­чаль­ный мо­мент вре­ме­ни масса изо­то­па 188 мг. Пе­ри­од его по­лу­рас­па­да со­став­ля­ет 3 мин. Най­ди­те, через сколь­ко минут масса изо­то­па будет равна 47 мг.

11.  
i

Две бри­га­ды, со­сто­я­щие из ра­бо­чих оди­на­ко­вой ква­ли­фи­ка­ции, од­но­вре­мен­но на­ча­ли вы­пол­нять два оди­на­ко­вых за­ка­за. В пер­вой бри­га­де было 16 ра­бо­чих, а во вто­рой  — 25 ра­бо­чих. Через 7 дней после на­ча­ла ра­бо­ты в первую бри­га­ду пе­ре­шли 8 ра­бо­чих из вто­рой бри­га­ды. В итоге оба за­ка­за были вы­пол­не­ны од­но­вре­мен­но. Най­ди­те, сколь­ко дней по­тре­бо­ва­лось на вы­пол­не­ние за­ка­зов.

13.  
i

а)  Ре­ши­те урав­не­ние  дробь: чис­ли­тель: 2 ко­си­нус в квад­ра­те x плюс 2 синус x ко­си­нус 2x минус 1, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: ко­си­нус x конец ар­гу­мен­та конец дроби =0.

б)  Най­ди­те все корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка минус 4 Пи ; минус дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка .

14.  
i

Дана пра­виль­ная тре­уголь­ная пи­ра­ми­да.

а)  До­ка­жи­те, что её про­ти­во­по­лож­ные ребра пер­пен­ди­ку­ляр­ны.

б)  Пусть ко­си­нус угла между бо­ко­вой гра­нью и ос­но­ва­ни­ем равен  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 6 конец ар­гу­мен­та , зна­ме­на­тель: 6 конец дроби . Най­ди­те угол между бо­ко­вы­ми гра­ня­ми этой пи­ра­ми­ды.

15.  
i

Ре­ши­те не­ра­вен­ство: 2 в сте­пе­ни x плюс дробь: чис­ли­тель: 80, зна­ме­на­тель: 2 в сте­пе­ни x конец дроби боль­ше или равно 21.

16.  
i

В ост­ро­уголь­ном тре­уголь­ни­ке ABC про­ве­ли вы­со­ту BH, из точки H на сто­ро­ны AB и BC опу­сти­ли пер­пен­ди­ку­ля­ры HK и HM со­от­вет­ствен­но.

а)  До­ка­жи­те, что тре­уголь­ник MBK по­до­бен тре­уголь­ни­ку ABC.

б)  Най­ди­те от­но­ше­ние пло­ща­ди тре­уголь­ни­ка MBK к пло­ща­ди четырёхуголь­ни­ка AKMC, если BH  =  2, а ра­ди­ус окруж­но­сти, опи­сан­ной около тре­уголь­ни­ка ABC равен 4.

17.  
i

31 де­каб­ря 2014 года Алек­сей взял в банке 6 902 000 руб­лей в кре­дит под 12,5% го­до­вых. Схема вы­плат кре­ди­та сле­ду­ю­щая  — 31 де­каб­ря каж­до­го сле­ду­ю­ще­го года банк на­чис­ля­ет про­цен­ты на остав­шу­ю­ся сумму долга (то есть уве­ли­чи­ва­ет долг на 12,5%), затем Алек­сей пе­ре­во­дит в банк x руб­лей. Какой долж­на быть сумма x, чтобы Алек­сей вы­пла­тил долг че­тырь­мя рав­ны­ми пла­те­жа­ми (то есть за че­ты­ре года)?

18.  
i

Най­ди­те все по­ло­жи­тель­ные зна­че­ния a, при каж­дом из ко­то­рых мно­же­ством ре­ше­ний не­ра­вен­ства  дробь: чис­ли­тель: x минус 3, зна­ме­на­тель: 3ax в квад­ра­те минус левая круг­лая скоб­ка 3a в квад­ра­те плюс 2 пра­вая круг­лая скоб­ка x плюс 2a конец дроби боль­ше или равно 0 яв­ля­ет­ся не­ко­то­рый луч.

19.  
i

На ри­сун­ке изоб­ражён гра­фик функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка a пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс b пра­вая круг­лая скоб­ка . Най­ди­те f левая круг­лая скоб­ка 238 пра­вая круг­лая скоб­ка .