Задания
Версия для печати и копирования в MS Word
Тип 13 № 620475
i

а)  Ре­ши­те урав­не­ние  левая круг­лая скоб­ка дробь: чис­ли­тель: 4, зна­ме­на­тель: 9 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка ко­си­нус x пра­вая круг­лая скоб­ка плюс 2 умно­жить на левая круг­лая скоб­ка дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка ко­си­нус x пра­вая круг­лая скоб­ка минус 3=0.

б)  Ука­жи­те корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка Пи ; 4 Пи пра­вая квад­рат­ная скоб­ка .

Спрятать решение

Ре­ше­ние.

а)  По­ло­жим, t= левая круг­лая скоб­ка дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка ко­си­нус x пра­вая круг­лая скоб­ка \!, по­лу­ча­ем:

t в квад­ра­те плюс 2t минус 3=0 рав­но­силь­но со­во­куп­ность вы­ра­же­ний t=1,t= минус 3. конец со­во­куп­но­сти .

Вер­нем­ся к ис­ход­ной пе­ре­мен­ной:

 левая круг­лая скоб­ка дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка ко­си­нус x пра­вая круг­лая скоб­ка =1 рав­но­силь­но ко­си­нус x=0 рав­но­силь­но x= дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс Пи k,k при­над­ле­жит Z .

б)  Отберём корни при по­мо­щи еди­нич­ной окруж­но­сти (см. рис.). По­лу­чим:  дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 2 конец дроби ,  дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 2 конец дроби и  дробь: чис­ли­тель: 7 Пи , зна­ме­на­тель: 2 конец дроби .

 

Ответ: а)  левая фи­гур­ная скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс Пи k:k при­над­ле­жит Z пра­вая фи­гур­ная скоб­ка ; б)  дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 2 конец дроби ,  дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 2 конец дроби и  дробь: чис­ли­тель: 7 Пи , зна­ме­на­тель: 2 конец дроби .

Спрятать критерии
Критерии проверки:

Кри­те­рии оце­ни­ва­ния вы­пол­не­ния за­да­нияБаллы
Обос­но­ван­но по­лу­че­ны вер­ные от­ве­ты в обоих пунк­тах.2
Обос­но­ван­но по­лу­чен вер­ный ответ в пунк­те а),

ИЛИ

по­лу­че­ны не­вер­ные от­ве­ты из-за вы­чис­ли­тель­ной ошиб­ки, но при этом име­ет­ся вер­ная по­сле­до­ва­тель­ность всех шагов ре­ше­ния пунк­та а) и пунк­та б).

1
Ре­ше­ние не со­от­вет­ству­ет ни од­но­му из кри­те­ри­ев, пе­ре­чис­лен­ных выше.0
Мак­си­маль­ный балл2

Аналоги к заданию № 505236: 620475 505246 505386 ... Все

Источник: А. Ларин. Тре­ни­ро­воч­ный ва­ри­ант № 361
Классификатор алгебры: По­ка­за­тель­ные урав­не­ния, Три­го­но­мет­ри­че­ские урав­не­ния
Методы алгебры: За­ме­на пе­ре­мен­ной
Кодификатор ФИПИ/Решу ЕГЭ: