Задания
Версия для печати и копирования в MS Word
Спрятать решение

Ре­ше­ние.

Най­дем про­из­вод­ную за­дан­ной функ­ции:

y'= левая круг­лая скоб­ка 3 минус x пра­вая круг­лая скоб­ка 'e в сте­пе­ни левая круг­лая скоб­ка 3 минус x пра­вая круг­лая скоб­ка плюс левая круг­лая скоб­ка 3 минус x пра­вая круг­лая скоб­ка левая круг­лая скоб­ка e в сте­пе­ни левая круг­лая скоб­ка 3 минус x пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка '= минус e в сте­пе­ни левая круг­лая скоб­ка 3 минус x пра­вая круг­лая скоб­ка плюс левая круг­лая скоб­ка 3 минус x пра­вая круг­лая скоб­ка e в сте­пе­ни левая круг­лая скоб­ка 3 минус x пра­вая круг­лая скоб­ка умно­жить на левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка = минус левая круг­лая скоб­ка 4 минус x пра­вая круг­лая скоб­ка e в сте­пе­ни левая круг­лая скоб­ка 3 минус x пра­вая круг­лая скоб­ка = левая круг­лая скоб­ка x минус 4 пра­вая круг­лая скоб­ка e в сте­пе­ни левая круг­лая скоб­ка 3 минус x пра­вая круг­лая скоб­ка .

Най­дем нули про­из­вод­ной:

 левая круг­лая скоб­ка x минус 4 пра­вая круг­лая скоб­ка e в сте­пе­ни левая круг­лая скоб­ка 3 минус x пра­вая круг­лая скоб­ка =0 рав­но­силь­но x=4.

Опре­де­лим знаки про­из­вод­ной функ­ции и изоб­ра­зим на ри­сун­ке по­ве­де­ние функ­ции:

Ис­ко­мая точка ми­ни­му­ма x=4.

 

Ответ: 4.

Источник: ЕГЭ по ма­те­ма­ти­ке 10.07.2020. Ос­нов­ная волна. Москва
Кодификатор ФИПИ/Решу ЕГЭ: