Задания
Версия для печати и копирования в MS Word
Спрятать решение

Ре­ше­ние.

Най­дем про­из­вод­ную за­дан­ной функ­ции:

y'=e в сте­пе­ни левая круг­лая скоб­ка x минус 7 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x в квад­ра­те минус 9x плюс 9 пра­вая круг­лая скоб­ка плюс левая круг­лая скоб­ка 2x минус 9 пра­вая круг­лая скоб­ка e в сте­пе­ни левая круг­лая скоб­ка x минус 7 пра­вая круг­лая скоб­ка = e в сте­пе­ни левая круг­лая скоб­ка x минус 7 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x в квад­ра­те минус 7x пра­вая круг­лая скоб­ка .

Най­дем нули про­из­вод­ной:

e в сте­пе­ни левая круг­лая скоб­ка x минус 7 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x в квад­ра­те минус 7x пра­вая круг­лая скоб­ка =0 рав­но­силь­но со­во­куп­ность вы­ра­же­ний x=7,x=0. конец со­во­куп­но­сти .

Опре­де­лим знаки про­из­вод­ной функ­ции и изоб­ра­зим на ри­сун­ке по­ве­де­ние функ­ции:

Наи­мень­шим зна­че­ни­ем функ­ции на от­рез­ке [6; 8] яв­ля­ет­ся

y левая круг­лая скоб­ка 7 пра­вая круг­лая скоб­ка =e в сте­пе­ни левая круг­лая скоб­ка 0 пра­вая круг­лая скоб­ка умно­жить на левая круг­лая скоб­ка 49 минус 63 плюс 9 пра­вая круг­лая скоб­ка = минус 5.

 

Ответ: −5.

Источник: Проб­ный ЕГЭ по ма­те­ма­ти­ке, Санкт-Пе­тер­бург, 19.03.2019. Ва­ри­ант 1
Кодификатор ФИПИ/Решу ЕГЭ: