СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Математика профильного уровня
≡ математика
сайты - меню - вход - новости


Задания
Версия для печати и копирования в MS Word
Задание 19 № 515787

а) Приведите пример такого натурального числа n, что числа n2 и (n + 16)2 дают одинаковый остаток при делении на 200.

б) Сколько существует трёхзначных чисел n с указанным в пункте а свойством?

в) Сколько существует двухзначных чисел m, для каждого из которых существует ровно 36 трёхзначных чисел n, таких, что n2 и (n + m)2 дают одинаковый остаток при делении на 200.

Решение.

а) Например, число 17.

б) Если два числа дают одинаковых остаток при делении на 200, то их разность будет делиться на 200. Имеем:

Следовательно, делится на 25, откуда Тогда:

Таким образом, существует 36 чисел.

в) По условию — целое, поэтому m — четное, т.е. Имеем:

— целое, m — двузначное, поэтому

 

1) Пусть k = 25, тогда n может быть любым трехзначным нечетным числом, которых гораздо больше, чем 36.

2) Пусть но кратно пяти. Значит, (n + k) кратно 10. В зависимости от k подойдут либо все четные трехзначные числа, делящиеся на 5, либо нечетные, делящиеся на 5. В любом случае таких чисел больше 36.

3) Пусть k не кратно 5, k — нечетное, но сумма (n + k) кратна 50. Поскольку то (n + k) с учетом условия принимает все значения, кратные 50, причем на одно значение — одно значение m. Следовательно, для каждого k возможно 18n, что не подходит по условию задачи.

4) Пусть k не кратно 5, k — четное, и сумма (n + k) кратна 25. Рассуждая аналогично пункту 3) при и , возможных значений (n + k) — 36, поэтому возможных значений n тоже 36. При и возможных значений (n + k) — 36, поэтому возможных значений n тоже 36. В таблице представлены подходящие k и соответствующие им m. Их 18.

 

k6812141618222426283234363842444648
m121624283236444852566468727684889296

 

Ответ: а) 17; б) 36; в) 18.

Источник: Типовые тестовые задания по математике под редакцией И.В. Ященко, 2017. Задания С7., Типовые тестовые задания по математике, под редакцией И. В. Ященко 2017. Вариант 8. (Часть C).
Раздел кодификатора ФИПИ/Решу ЕГЭ: Числа и их свойства, Числа и их свойства