СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Математика профильного уровня
≡ математика
сайты - меню - вход - новости


Задания
Версия для печати и копирования в MS Word
Задание 4 № 320431

В тор­го­вом цен­тре два оди­на­ко­вых ав­то­ма­та про­да­ют кофе. Ве­ро­ят­ность того, что к концу дня в ав­то­ма­те за­кон­чит­ся кофе, равна 0,35. Ве­ро­ят­ность того, что кофе за­кон­чит­ся в обоих ав­то­ма­тах, равна 0,2. Най­ди­те ве­ро­ят­ность того, что к концу дня кофе оста­нет­ся в обоих ав­то­ма­тах.

Ре­ше­ние.

Рас­смот­рим со­бы­тия

А = кофе за­кон­чит­ся в пер­вом ав­то­ма­те,

В = кофе за­кон­чит­ся во вто­ром ав­то­ма­те.

Тогда

A·B = кофе за­кон­чит­ся в обоих ав­то­ма­тах,

A + B = кофе за­кон­чит­ся хотя бы в одном ав­то­ма­те.

По усло­вию P(A) = P(B) = 0,35; P(A·B) = 0,2.

 

Со­бы­тия A и B сов­мест­ные, ве­ро­ят­ность суммы двух сов­мест­ных со­бы­тий равна сумме ве­ро­ят­но­стей этих со­бы­тий, умень­шен­ной на ве­ро­ят­ность их про­из­ве­де­ния:

P(A + B) = P(A) + P(B) − P(A·B) = 0,35 + 0,35 − 0,2 = 0,5.

Сле­до­ва­тель­но, ве­ро­ят­ность про­ти­во­по­лож­но­го со­бы­тия, со­сто­я­ще­го в том, что кофе оста­нет­ся в обоих ав­то­ма­тах, равна 1 − 0,5 = 0,5.

 

Ответ: 0,5.