Разные задачи о многоугольниках
Пройти тестирование по этим заданиям
Вернуться к каталогу заданий
Версия для печати и копирования в MS Word
Пятиугольник ABCDE вписан в окружность. Из вершины A опущены перпендикуляры AF, AH, AP и AQ на прямые DE, BE, CD и BC соответственно.
а) Докажите, что
б) Найдите AH, если и
Точки E и K — соответственно середины сторон CD и AD квадрата ABCD. Прямая BE пересекается с прямой CK в точке O.
а) Докажите, что вокруг четырёхугольника ABOK можно описать окружность.
б) Найдите AO, если сторона квадрата равна 1.
В треугольнике АВС известно, что АВ = АС = 10, ВС = 12. На стороне АВ отметили точки М1 и М2 так, что AM1 < AM2. Через точки М1 и М2 провели прямые, перпендикулярные стороне АВ и отсекающие от треугольника АВС пятиугольник, в который можно вписать окружность.
а) Докажите, что AM1 : BM2 = 1 : 3.
б) Найдите площадь данного пятиугольника.
Окружность, проходящая через вершину B треугольника ABC, касается стороны AC в точке D, такой, что BD — биссектриса угла B, и пересекает стороны AB и BC в точках E и F соответственно.
а) Докажите, что AE : CF = AB : BC.
б) Найдите отношение площадей треугольников AED и DFC, если известно, что AE : CF = 2 : 3.
Внутри окружности с центром О построен правильный шестиугольник KOFPDL так, что его вершина D лежит на окружности. Из точки В, диаметрально противоположной точке D, проведены две хорды AB и ВС, проходящие через вершины К и F шестиугольника соответственно.
а) Докажите, что
б) Найдите площадь треугольника АВС, если радиус окружности равен 14.
Пройти тестирование по этим заданиям

