А. Ларин. Тренировочный вариант № 342.
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.
Версия для печати и копирования в MS Word
а) Решите уравнение
б) Укажите корни этого уравнения, принадлежащие отрезку
На следующей странице вам будет предложено проверить их самостоятельно.
Основанием четырехугольной пирамиды SABCD является прямоугольник ABCD, причем BC = 6. Высота пирамиды проходит через точку пересечения диагоналей прямоугольника. Из вершин A и C опущены перпендикуляры AP и CQ на ребро SB.
а) Докажите, что P — середина BQ.
б) Найдите угол между плоскостями SBA и SBC, если SD = 9.
На следующей странице вам будет предложено проверить их самостоятельно.
Решите неравенство
На следующей странице вам будет предложено проверить их самостоятельно.
В трапеции KLMN основания LM и KN равны 2 и 8 соответственно. Из точки Е, лежащей на стороне MN, опущен перпендикуляр EF на сторону KL. Известно, что F — середина стороны KL, FM = 3 и что площадь четырехугольника KFEN в четыре раза больше площади четырехугольника LFEM.
а) Докажите, что прямые FN и LE параллельны.
б) Найдите длину отрезка FN.
На следующей странице вам будет предложено проверить их самостоятельно.
Имеется три пакета акций. Общее суммарное количество акций первых двух пакетов совпадает с общим количеством акций в третьем пакете. Первый пакет в 4 раза дешевле второго, а суммарная стоимость первого и второго пакетов совпадает со стоимостью третьего пакета. Одна акция из второго пакета дороже одной акции из первого пакета на величину, заключенную в пределах от 16 тыс. руб. до 20 тыс. руб., а цена акции из третьего пакета не меньше 42 тыс. руб. и не больше 60 тыс. руб. Определите, какой наименьший и наибольший процент от общего количества акций может содержаться в первом пакете.
На следующей странице вам будет предложено проверить их самостоятельно.
Найдите все значения параметра а, при каждом из которых имеет единственное решение система уравнений
На следующей странице вам будет предложено проверить их самостоятельно.
Маша задумала 6 различных натуральных чисел и проделывает с ними такую операцию: сначала находит среднее арифметическое первых двух чисел, затем — среднее арифметическое полученного результата и третьего числа, после — среднее арифметическое полученного результата и четвертого числа, затем — среднее арифметическое полученного числа и пятого числа, и наконец — среднее арифметическое полученного результата и шестого числа. Полученный результат она обозначает через М. Далее Маша находит число А — среднее арифметическое исходных чисел.
а) Возможно ли, что А = М?
б) Возможно ли, что М = 6А?
в) Найдите наибольшее натуральное значение n, для которого возможно, что М = nА.
На следующей странице вам будет предложено проверить их самостоятельно.