1. Тип 13 № 552113

Классификатор алгебры: Область определения уравнения, Сравнение чисел, Тригонометрические уравнения, Тригонометрические уравнения, решаемые разложением на множители
Методы алгебры: Группировка
Кодификатор ФИПИ/Решу ЕГЭ: 2.1.4 Тригонометрические уравнения
Уравнения. Тригонометрические уравнения, разложение на множители
i
а) Решите уравнение
б) Укажите корни этого уравнения, принадлежащие промежутку
Решение. а) Уравнение определено, если
Умножим на
при этом условии и разложим на множители:
Последняя серия не подходит, поскольку Таким образом,
б) Отбор корней проведем на тригонометрической окружности (см. рис.). На заданном полуинтервале лежат два корня: и
Ответ: а) б)
Критерии проверки:
| Критерии оценивания выполнения задания | Баллы |
|---|---|
| Обоснованно получены верные ответы в обоих пунктах. | 2 |
| Обоснованно получен верный ответ в пункте а), ИЛИ получены неверные ответы из-за вычислительной ошибки, но при этом имеется верная последовательность всех шагов решения пункта а) и пункта б). | 1 |
| Решение не соответствует ни одному из критериев, перечисленных выше. | 0 |
| Максимальный балл | 2 |
Ответ: а)
б)

552113
а)
б)

Классификатор алгебры: Область определения уравнения, Сравнение чисел, Тригонометрические уравнения, Тригонометрические уравнения, решаемые разложением на множители
Методы алгебры: Группировка
Кодификатор ФИПИ/Решу ЕГЭ: 2.1.4 Тригонометрические уравнения
PDF-версии: