Вариант № 14977072

ЕГЭ — 2017. Основная волна 02.06.2017. Вариант 433 (часть 2)

При вы­пол­не­нии за­да­ний с крат­ким от­ве­том впи­ши­те в поле для от­ве­та цифру, ко­то­рая со­от­вет­ству­ет но­ме­ру пра­виль­но­го от­ве­та, или число, слово, по­сле­до­ва­тель­ность букв (слов) или цифр. Ответ сле­ду­ет за­пи­сы­вать без про­бе­лов и каких-либо до­пол­ни­тель­ных сим­во­лов. Дроб­ную часть от­де­ляй­те от целой де­ся­тич­ной за­пя­той. Еди­ни­цы из­ме­ре­ний пи­сать не нужно.


Если ва­ри­ант задан учи­те­лем, вы мо­же­те впи­сать или за­гру­зить в си­сте­му от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Учи­тель уви­дит ре­зуль­та­ты вы­пол­не­ния за­да­ний с крат­ким от­ве­том и смо­жет оце­нить за­гру­жен­ные от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Вы­став­лен­ные учи­те­лем баллы отоб­ра­зят­ся в вашей ста­ти­сти­ке.


Версия для печати и копирования в MS Word
1

а)  Ре­ши­те урав­не­ние:  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 13 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка ко­си­нус 2x минус 9 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та ко­си­нус x минус 8 пра­вая круг­лая скоб­ка =0.

б)  Ука­жи­те корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка минус 2 Пи ; минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка .


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

2

В тре­уголь­ной пи­ра­ми­де SABC из­вест­ны бо­ко­вые рёбра: SA=SB=7,SC=5. Ос­но­ва­ни­ем вы­со­ты этой пи­ра­ми­ды яв­ля­ет­ся се­ре­ди­на ме­ди­а­ны CM тре­уголь­ни­ка ABC. Эта вы­со­та равна 4.

а)  До­ка­жи­те, что тре­уголь­ник ABC рав­но­бед­рен­ный.

б)  Най­ди­те объём пи­ра­ми­ды SABC.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

3

Ре­ши­те не­ра­вен­ство: 1 плюс дробь: чис­ли­тель: 11, зна­ме­на­тель: 2 в сте­пе­ни x минус 8 конец дроби плюс дробь: чис­ли­тель: 28, зна­ме­на­тель: 4 в сте­пе­ни x минус 2 в сте­пе­ни левая круг­лая скоб­ка x плюс 4 пра­вая круг­лая скоб­ка плюс 64 конец дроби \geqslant0.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

4
Тип 17 № 517493
i

В пря­мо­уголь­ном тре­уголь­ни­ке ABC про­ве­де­на вы­со­та CH из вер­ши­ны пря­мо­го угла. В тре­уголь­ни­ки ACH и BCH впи­са­ны окруж­но­сти с цен­тра­ми O1 и O2 со­от­вет­ствен­но, ка­са­ю­щи­е­ся пря­мой CH в точ­ках M и N со­от­вет­ствен­но.

а)  До­ка­жи­те, что пря­мые AO1 и CO2 пер­пен­ди­ку­ляр­ны.

б)  Най­ди­те пло­щадь четырёхуголь­ни­ка MO1NO2, если AC = 20 и BC = 15.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

5

В июле пла­ни­ру­ет­ся взять кре­дит в банке на сумму 9 млн руб­лей на не­ко­то­рый срок (целое число лет). Усло­вия его воз­вра­та та­ко­вы:

  — каж­дый ян­варь долг воз­рас­та­ет на 20% по срав­не­нию с кон­цом преды­ду­ще­го года;

  — с фев­ра­ля по июнь каж­до­го года не­об­хо­ди­мо вы­пла­тить часть долга;

  — в июле каж­до­го года долг дол­жен быть на одну и ту же сумму мень­ше долга на июль преды­ду­ще­го года.

Чему будет равна общая сумма вы­плат после пол­но­го по­га­ше­ния кре­ди­та, если наи­боль­ший го­до­вой платёж со­ста­вит 3,6 млн руб­лей?


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

6

Най­ди­те все зна­че­ния а, при каж­дом из ко­то­рых урав­не­ние

x в квад­ра­те плюс левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка умно­жить на ко­рень из: на­ча­ло ар­гу­мен­та: 3x минус a конец ар­гу­мен­та =x

имеет ровно один ко­рень на от­рез­ке [0; 1].


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

7

За­ду­ма­но не­сколь­ко на­ту­раль­ных чисел (не обя­за­тель­но раз­лич­ных). Эти числа и все их воз­мож­ные про­из­ве­де­ния (по 2 числа, по 3 числа и т. д.) вы­пи­сы­ва­ют на доску. Если какое-⁠то число n, вы­пи­сан­ное на доску, по­вто­ря­ет­ся не­сколь­ко раз, то на доске остав­ля­ют одно такое число n, а осталь­ные числа, рав­ные n, сти­ра­ют. На­при­мер, если за­ду­ма­ны числа 1, 3, 3, 4, то на доске будет за­пи­сан набор 1, 3, 4, 9, 12, 36.

а)  При­ве­ди­те при­мер за­ду­ман­ных чисел, для ко­то­рых на доске будет за­пи­сан набор 2, 3, 5, 6, 10, 15, 25, 30, 50, 75, 150.

б)  Су­ще­ству­ет ли при­мер таких за­ду­ман­ных чисел, для ко­то­рых на доске будет за­пи­сан набор 2, 5, 10, 11, 22, 25, 55, 110, 275, 550?

в)  При­ве­ди­те все при­ме­ры пяти за­ду­ман­ных чисел, для ко­то­рых на доске будет за­пи­сан набор, наи­боль­шее число в ко­то­ром равно 91.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.
Завершить работу, свериться с ответами, увидеть решения.