Вариант № 10436132

А. Ларин: Тренировочный вариант № 155.

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
1
Задания Д8 C1 № 514072

Дано уравнение  логарифм по основанию 2 x в квадрате плюс логарифм по основанию x 4=5.

а)  Решите уравнение.

б)  Укажите корни этого уравнения, принадлежащие отрезку  левая квадратная скобка корень 3 степени из левая круглая скобка 3 правая круглая скобка ; корень 3 степени из левая круглая скобка 65 правая круглая скобка правая квадратная скобка .


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

2
Задания Д10 C2 № 514073

Через середину ребра AA1 куба ABCDA1B1C1D1 перпендикулярно прямой ВD1 проведена плоскость α. 

а)  Докажите, что сечением куба плоскостью α является правильный шестиугольник.

б)  Найдите угол между плоскостями α и ABC.    


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

3
Задания Д12 C3 № 514074

Решите неравенство  корень из 9 минус x в квадрате умножить на левая круглая скобка 3 синус x минус 2 косинус в квадрате x правая круглая скобка \geqslant0.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

4
Задания Д15 C4 № 514075

В прямоугольный треугольник ABC вписана окружность ω, касающаяся гипотенузы AB в точке M. Точка О — центр описанной около треугольника ABC окружности. Касательная к окружности ω, проведенная из точки О, пересекает сторону АС в точке P.

а)  Докажите, что площадь треугольника ABC равна произведению длин отрезков AM и BM.

б)  Найдите площадь четырехугольника BCPO, если известно, что AM = 12, BM = 5.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

5
Задания Д16 C5 № 514076

1 марта 2012 года близнецы Саша и Паша решили открыть в банке вклад на 3 года. У каждого из них имелась сумма 700 000 рублей. Саша вложил свои деньги под 10% годовых. Паша перевел все свои деньги в доллары, отдав 35  рублей за каждый доллар, и открыл валютный вклад под 1% годовых. Через три года Саша и Паша закрыли свои счета. Паша тут же решил всю снятую сумму снова перевести в рубли. Известно, что 1 марта 2015 года банк давал за 1 доллар 50 рублей. У кого из братьев в итоге на руках оказалась большая сумма? На сколько рублей?


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

6
Задания Д17 C6 № 514077

Найдите все значения а, при каждом из которых уравнение

a умножить на 2 в степени x минус дробь: числитель: 2 в степени левая круглая скобка x плюс 1 правая круглая скобка плюс 1, знаменатель: 2 в степени x минус 1 конец дроби =2a плюс 2

имеет ровно один корень.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

7
Задания Д19 C7 № 514078

а)  Какое наибольшее число ладей можно поставить на шахматной доске так, чтобы никакие две не били друг друга?                          

б)  На шахматной доске поставлены восемь ладей. Какое наибольшее число клеток может оказаться не под боем этих ладей?                                                   

в)  На 64 летках шахматной доски выписаны подряд числа от 1 до 64 (в верхнем ряду слева направо числа от 1 до 8, во втором ряду числа от 9 до 16 и т. д.) Восемь ладей поставлены так, что никакие две не бьют друг друга. Подсчитана сумма чисел, написанных на тех восьми клетках, на которых поставлены ладьи. Найдите все значения, которые может принимать эта сумма.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
Завершить тестирование, свериться с ответами, увидеть решения.