СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Математика профильного уровня
≡ математика
сайты - меню - вход - новости


Задания
Версия для печати и копирования в MS Word
Задание 6 № 52061

Касательные CA и CB к окруж­но­сти образуют угол ACB, рав­ный 78°. Най­ди­те величину мень­шей дуги AB, стя­ги­ва­е­мой точками касания. Ответ дайте в градусах.

Решение.

Треугольник АВС равнобедренный, так как отрезки касательных, проведенных к окружности из одной точки, равны. Следовательно, угол ВAC равен 0,5(180° − 78°) = 51°. Угол между касательной и хордой, проведенной через точку касания, равен половине заключенной между ними дуги, поэтому искомая дуга равна 2 · 51° = 102°.

 

Ответ: 102.

 

Приведем другое решение.

Пусть искомая длина меньшей дуги АВ равна х, тогда длина большей дуги АВ равна 360° − х. Угол между двумя касательными, проведенными из одной точки, равен половине высекаемых ими дуг, откуда имеем: 0,5(360° − 2x) = 78°. Тогда x = 102°.