Задания
Версия для печати и копирования в MS Word
Тип 15 № 508490
i

Ре­ши­те не­ра­вен­ство:  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка x в квад­ра­те пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка в квад­ра­те мень­ше или равно 1.

Спрятать решение

Ре­ше­ние.

Рас­смот­рим два слу­чая. Пер­вый слу­чай: x в квад­ра­те боль­ше 1.

 ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка x в квад­ра­те пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка в квад­ра­те мень­ше или равно 1 рав­но­силь­но левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка в квад­ра­те мень­ше или равно x в квад­ра­те рав­но­силь­но 2x минус 1 боль­ше или равно 0 рав­но­силь­но x боль­ше или равно дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби .

Учи­ты­вая усло­вие x в квад­ра­те боль­ше 1, по­лу­ча­ем: x боль­ше 1.

Вто­рой слу­чай: 0 мень­ше x в квад­ра­те мень­ше 1.

 ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка x в квад­ра­те пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка в квад­ра­те мень­ше или равно 1 рав­но­силь­но левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка в квад­ра­те боль­ше или равно x в квад­ра­те рав­но­силь­но 2x минус 1 мень­ше или равно 0 рав­но­силь­но x мень­ше или равно дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби .

Учи­ты­вая усло­вие 0 мень­ше x в квад­ра­те мень­ше 1, по­лу­ча­ем  левая круг­лая скоб­ка минус 1,0 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 0, дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка .

Ре­ше­ние не­ра­вен­ства:  левая круг­лая скоб­ка минус 1,0 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 0, дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка \cup левая круг­лая скоб­ка 1, плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка .

 

Ответ:  левая круг­лая скоб­ка минус 1,0 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 0, дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка \cup левая круг­лая скоб­ка 1, плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка .

Спрятать критерии
Критерии проверки:

Кри­те­рии оце­ни­ва­ния вы­пол­не­ния за­да­нияБаллы
Обос­но­ван­но по­лу­чен вер­ный ответ2
Обос­но­ван­но по­лу­чен ответ, от­ли­ча­ю­щий­ся от вер­но­го ис­клю­че­ни­ем точек,

ИЛИ

по­лу­чен не­вер­ный ответ из-за вы­чис­ли­тель­ной ошиб­ки, но при этом име­ет­ся вер­ная по­сле­до­ва­тель­ность всех шагов ре­ше­ния

1
Ре­ше­ние не со­от­вет­ству­ет ни од­но­му из кри­те­ри­ев, пе­ре­чис­лен­ных выше.0
Мак­си­маль­ный балл2

Аналоги к заданию № 508488: 516932 508490 508515 ... Все

Классификатор алгебры: Не­ра­вен­ства с ло­га­риф­ма­ми по пе­ре­мен­но­му ос­но­ва­нию
Методы алгебры: Ра­ци­о­на­ли­за­ция не­ра­венств
Кодификатор ФИПИ/Решу ЕГЭ: 2.2.9 Метод ин­тер­ва­лов