Первый и второй насосы наполняют бассейн за 10 минут, второй и третий — за 15 минут, а первый и третий — за 18 минут. За сколько минут эти три насоса заполнят бассейн, работая вместе?
Наименьшее общее кратное чисел 10, 15 и 18 равно 90. За 90 минут первый и второй, второй и третий, первый и третий насосы (каждый учтен дважды) заполнят 9 + 6 + 5 = 20 бассейнов. Следовательно, работая одновременно, первый, второй и третий насосы заполняют 10 бассейнов за 90 минут, а значит, 1 бассейн за 9 минут.
Ответ: 9.
Приведём другое решение.
За одну минуту первый и второй насосы заполнят 1/10 бассейна, второй и третий — 1/15 бассейна, а первый и третий — 1/18 бассейна. Работая вместе, за одну минуту два первых, два вторых и два третьих насоса заполнят
бассейна.
Таким образом, они могли бы заполнить бассейн за 9/2 минуты или 4,5 минуты. Поскольку каждый из насосов был учтен два раза, в реальности первый, второй и третий насосы, работая вместе, могут заполнить бассейн за 9 минут.

