Тип 17 № 507237 

Планиметрическая задача. Окружности и системы окружностей
i
Две окружности касаются внутренним образом. Третья окружность касается первых двух и их линии центров.
а) Докажите, что периметр треугольника с вершинами в центрах трёх окружностей равен диаметру наибольшей из этих окружностей.
б) Найдите радиус третьей окружности, если известно, что радиусы первых двух равны 4 и 1.
Решение.
а) Пусть АВ — диаметр большей из трёх окружностей, О — её центр, O1 — центр окружности радиуса r у касающейся окружности с диаметром АВ в точке А, O2 — центр окружности радиуса R, касающейся окружности с диаметром АВ в точке С, окружности с центром O1 — в точке D, отрезка АВ — в точке Е. Точки О, O2 и С лежат на одной прямой, поэтому OO2 = ОС − O2С = ОС − R. Аналогично ОО1 = OA − О1А = ОА − r и O1O2 = O1D + O2D = r + R. Следовательно, периметр треугольника OO1O2 равен



б) Пусть OA = 4, r = 1. Тогда получаем: O2Е = R, O1O2 = 1 + R, OO1 = OA − О1А = 4 − 1 = 3, OO2 = ОС − O2С = 4 − R. Из прямоугольных треугольников O1O2Е и OO2Е находим, что


а поскольку
О1E = OO1 + ОЕ, то 
Полученное уравнение не имеет корней, что означает, что данная конфигурация невозможна.
Рассмотрим случай, когда точка Е лежит между точками О и А. В этом случае О1E = OO1 − ОЕ, то есть
Из этого уравнения находим, что 
Ответ: б) 
Приведем решение пункта б) Наиля Мусина.
Пусть радиус третьей окружности равен R. Рассмотрим треугольник OO1O2:
По доказанному в пункте а) периметр треугольника OO1O2 равен 8. Найдем площадь этого треугольника по формуле Герона:

Заметим, что радиус R третьей окружности является высотой данного треугольника, следовательно,

Критерии проверки:| Критерии оценивания выполнения задания | Баллы |
|---|
| Имеется верное доказательство утверждения пункта a) и обоснованно получен верный ответ в пункте б) | 3 |
| Получен обоснованный ответ в пункте б) ИЛИ имеется верное доказательство утверждения пункта а) и при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки | 2 |
| Имеется верное доказательство утверждения пункта а) ИЛИ при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки, ИЛИ обоснованно получен верный ответ в пункте б) с использованием утверждения пункта а), при этом пункт а) не выполнен | 1 |
| Решение не соответствует ни одному из критериев, приведённых выше | 0 |
| Максимальный балл | 3 |
Ответ: б)
