Варианты заданий
Версия для печати и копирования в MS Word
1
Тип 17 № 507237
i

Две окруж­но­сти ка­са­ют­ся внут­рен­ним об­ра­зом. Тре­тья окруж­ность ка­са­ет­ся пер­вых двух и их линии цен­тров.

а)  До­ка­жи­те, что пе­ри­метр тре­уголь­ни­ка с вер­ши­на­ми в цен­трах трёх окруж­но­стей равен диа­мет­ру наи­боль­шей из этих окруж­но­стей.

б)  Най­ди­те ра­ди­ус тре­тьей окруж­но­сти, если из­вест­но, что ра­ди­у­сы пер­вых двух равны 4 и 1.


Аналоги к заданию № 507237: 507211 515670 Все


2
Тип 17 № 507211
i

Две окруж­но­сти ка­са­ют­ся внут­рен­ним об­ра­зом. Тре­тья окруж­ность ка­са­ет­ся пер­вых двух и их линии цен­тров.

а)  До­ка­жи­те, что пе­ри­метр тре­уголь­ни­ка с вер­ши­на­ми в цен­трах трёх окруж­но­стей равен диа­мет­ру наи­боль­шей из этих окруж­но­стей.

б)  Най­ди­те ра­ди­ус тре­тьей окруж­но­сти, если из­вест­но, что ра­ди­у­сы пер­вых двух равны 6 и 2.


Аналоги к заданию № 507237: 507211 515670 Все


3

Две окруж­но­сти ка­са­ют­ся внут­рен­ним об­ра­зом. Тре­тья окруж­ность ка­са­ет­ся пер­вых двух и их линии цен­тров.

а)  До­ка­жи­те, что пе­ри­метр тре­уголь­ни­ка с вер­ши­на­ми в цен­трах трёх окруж­но­стей равен диа­мет­ру наи­боль­шей из этих окруж­но­стей.

б)  Най­ди­те ра­ди­ус тре­тьей окруж­но­сти, если из­вест­но, что ра­ди­у­сы пер­вых двух равны 3 и 2.


Аналоги к заданию № 507237: 507211 515670 Все