Вариант № 5410683

А. Ларин: Тренировочный вариант № 27.

При вы­пол­не­нии за­да­ний с крат­ким от­ве­том впи­ши­те в поле для от­ве­та цифру, ко­то­рая со­от­вет­ству­ет но­ме­ру пра­виль­но­го от­ве­та, или число, слово, по­сле­до­ва­тель­ность букв (слов) или цифр. Ответ сле­ду­ет за­пи­сы­вать без про­бе­лов и каких-либо до­пол­ни­тель­ных сим­во­лов. Дроб­ную часть от­де­ляй­те от целой де­ся­тич­ной за­пя­той. Еди­ни­цы из­ме­ре­ний пи­сать не нужно.


Если ва­ри­ант задан учи­те­лем, вы мо­же­те впи­сать или за­гру­зить в си­сте­му от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Учи­тель уви­дит ре­зуль­та­ты вы­пол­не­ния за­да­ний с крат­ким от­ве­том и смо­жет оце­нить за­гру­жен­ные от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Вы­став­лен­ные учи­те­лем баллы отоб­ра­зят­ся в вашей ста­ти­сти­ке.


Версия для печати и копирования в MS Word
1
Тип Д8 C1 № 506002
i

а)  Ре­ши­те урав­не­ние \log _2 левая круг­лая скоб­ка 2 синус в квад­ра­те 2x плюс 1 пра­вая круг­лая скоб­ка минус 2\log _2 ко­си­нус x=1 плюс \log _25.

б)  Най­ди­те все корни на про­ме­жут­ке  левая квад­рат­ная скоб­ка минус Пи ; Пи пра­вая квад­рат­ная скоб­ка .


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

2

В тре­уголь­ной пи­ра­ми­де SABC на ребре SB взята точка M, де­ля­щая от­ре­зок SB в от­но­ше­нии 3 : 5, счи­тая от вер­ши­ны S. Через точки A и M па­рал­лель­но ме­ди­а­не BD тре­уголь­ни­ка ABC про­ве­де­на плос­кость. В каком от­но­ше­нии эта плос­кость делит объем пи­ра­ми­ды?


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

3

Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

4
Тип Д15 C4 № 506005
i

Две пря­мые, пер­пен­ди­ку­ляр­ные сто­ро­не АС тре­уголь­ни­ка ABC, делят этот тре­уголь­ник на три рав­но­ве­ли­кие части. Из­вест­но, что от­рез­ки этих пря­мых, за­клю­чен­ные внут­ри тре­уголь­ни­ка, равны между собой и равны сто­ро­не АС. Най­ди­те углы тре­уголь­ни­ка ABC.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

5
Тип Д17 C6 № 506006
i

Най­ди­те все зна­че­ния па­ра­мет­ра a, при ко­то­рых урав­не­ние

 левая круг­лая скоб­ка a минус x в квад­ра­те минус ко­си­нус дробь: чис­ли­тель: 11 Пи x, зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка умно­жить на ко­рень из: на­ча­ло ар­гу­мен­та: 8 минус ax конец ар­гу­мен­та =0

имеет на от­рез­ке [−2; 3] не­чет­ное число раз­лич­ных кор­ней.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

6
Тип 19 № 506007
i

Дайте обос­но­ван­ные от­ве­ты на сле­ду­ю­щие во­про­сы.

а)  В мешке на­хо­дят­ся 1 жел­тый, 1 зе­ле­ный и 2 крас­ных шара. Из мешка слу­чай­ным об­ра­зом вы­ни­ма­ют 2 шара раз­но­го цвета и за­ме­ня­ют одним шаром тре­тье­го цвета. Этот про­цесс про­дол­жа­ют до тех пор, пока все остав­ши­е­ся шары в мешке не ока­жут­ся од­но­го цвета (воз­мож­но, что при этом в мешке оста­нет­ся один шар) Ка­ко­го цвета шары (или шар) могут остать­ся в мешке?

б)  В мешке 3 жел­тых, 4 зе­ле­ных и 5 крас­ных шаров. Ка­ко­го цвета шары (или шар) могут остать­ся в мешке в конце после при­ме­не­ния опи­сан­ной в преды­ду­щем пунк­те про­це­ду­ры?

в)  В мешке на­хо­дят­ся 3 жел­тых, 4 зе­ле­ных и 5 крас­ных шаров. Из мешка слу­чай­ным об­ра­зом вы­ни­ма­ют 2 шара раз­но­го цвета и за­ме­ня­ют двумя ша­ра­ми тре­тье­го цвета. Можно ли, при­ме­няя эту про­це­ду­ру мно­го­крат­но, до­бить­ся того, чтобы в мешке ока­за­лись шары од­но­го цвета? Если можно, то ка­ко­го цвета эти шары?


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.
Завершить работу, свериться с ответами, увидеть решения.