А. Ларин. Тренировочный вариант № 432.
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.
Версия для печати и копирования в MS Word
а) Решите уравнение
б) Найдите все корни уравнения, принадлежащие отрезку
На следующей странице вам будет предложено проверить их самостоятельно.
В правильной четырехугольной пирамиде SABCD с вершиной S точка К лежит на ребре SC и делит его в отношении 1 : 3, считая от вершины. Точка M — середина AS. Через МK проведено сечение, параллельное прямой DC.
а) Докажите, что сечение является равнобедренной трапецией.
б) Найдите угол между прямыми MK и DC, если
На следующей странице вам будет предложено проверить их самостоятельно.
Решите неравенство:
На следующей странице вам будет предложено проверить их самостоятельно.
В июле 2025 года планируется взять кредит в банке на сумму 650 тыс. рублей на 10 лет. Условия его возврата таковы:
— в январе 2026, 2027, 2028, 2029
— в январе 2031, 2032, 2033, 2034 и 2035 годов долг возрастает на 16% по сравнению с концом предыдущего года;
— с февраля по июнь каждого года необходимо выплатить часть долга;
— в июле каждого года долг должен быть на одну и ту же величину меньше долга на июль предыдущего года;
— к июлю 2035 года кредит должен быть полностью погашен.
Найдите общую сумму выплат после полного погашения кредита.
На следующей странице вам будет предложено проверить их самостоятельно.
Дан треугольник ABC. Серединный перпендикуляр к стороне AB пересекается с биссектрисой угла BAC в точке K, лежащей на стороне BC.
а) Докажите, что
б) Найдите радиус окружности, вписанной в треугольник AKC, если и сторона AC = 24.
На следующей странице вам будет предложено проверить их самостоятельно.
Найдите все значения параметра a, при которых уравнение
имеет единственный корень на отрезке [−2; 0].
На следующей странице вам будет предложено проверить их самостоятельно.
На доске написано число 2045 и еще несколько (не менее двух) натуральных чисел, не превосходящих 5000. Все написанные на доске числа различны. Сумма любых двух из написанных чисел делится на какое-нибудь из остальных.
а) Может ли на доске быть написано ровно 1024 числа?
б) Может ли на доске быть написано ровно пять чисел?
в) Какое наименьшее количество чисел может быть написано на доске?
На следующей странице вам будет предложено проверить их самостоятельно.