Вариант № 32870098

А. Ларин. Тренировочный вариант № 314. (Часть C)

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
1
Тип 12 № 546442

а) Решите уравнение  корень из \ctg x левая круглая скобка синус в квадрате x минус дробь: числитель: 1, знаменатель: 4 конец дроби правая круглая скобка =0.

б) Укажите корни этого уравнения, принадлежащие отрезку  левая квадратная скобка минус дробь: числитель: 3 Пи , знаменатель: 2 конец дроби ; 0 правая квадратная скобка .


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

2
Тип 13 № 546443

Основание ABCD призмы ABCDA_1B_1C_1D_1 — трапеция с основаниями AB = 2CD.

а) Докажите BA_1D_1 проходит через середину бокового ребра CC_1.

б) Найдите угол между боковым ребром AA_1 и этой плоскостью, если призма прямая, трапеция ABCD прямоугольная с прямым углом при вершине B, а BC = CD и AA_1= корень из 6 CD.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

3
Тип 14 № 546444

Решите неравенство  дробь: числитель: левая круглая скобка 4x минус |x минус 6| правая круглая скобка левая круглая скобка логарифм по основанию левая круглая скобка дробь: числитель: 1, знаменатель: 3 конец дроби правая круглая скобка левая круглая скобка x плюс 4 правая круглая скобка плюс 1 правая круглая скобка , знаменатель: 2 в степени левая круглая скобка x в квадрате правая круглая скобка минус 2 в степени левая круглая скобка |x| правая круглая скобка конец дроби больше или равно 0.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

4
Задания Д14 C4 № 546445

Точка I — центр окружности, вписанной в треугольник ABC. Луч BI пересекает описанную около треугольника ABC окружность в точке N . Известно, что угол ABC равен 60°.

а) Докажите, что N — центр окружности, описанной около треугольника AIC.

б) Найдите радиус окружности, описанной около треугольника ABC, если известно, что IN = 1.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

5
Задания Д16 C5 № 546446

Клиент положил в банк некоторую сумму денег. Через год, после начисления процентов, он добавил на свой счет сумму, составляющую 0,9 исходной, в результате чего остаток на счете стал равен 3,4 млн рублей. А еще через год, после начисления процентов, остаток на его счете увеличился в 2,2 раза по сравнению с исходной суммой. Какую сумму клиент положил в банк первоначально, если в конце каждого года банк

начислял один и тот же процент годовых?


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

6
Тип 17 № 546447

Найдите все значения параметра a не равно 0 такие, что неравенство

\log в квадрате _2 левая круглая скобка x в квадрате плюс 2ax плюс a в квадрате минус a плюс 1 правая круглая скобка минус логарифм по основанию левая круглая скобка 2 правая круглая скобка дробь: числитель: a в квадрате , знаменатель: 6 конец дроби умножить на логарифм по основанию 2 левая круглая скобка x в квадрате плюс 2ax плюс a в квадрате минус a плюс 1 правая круглая скобка меньше или равно 0

не имеет решений.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

7
Задания Д18 C7 № 546448

На доске выписаны все натуральные числа от 1 до 2014 без пропусков и повторений: 1, 2, 3, …, 2013, 2014. С выписанными на доске числами проделывают следующие операции: выбирают какие‐либо два числа и записывают на доске модуль их разности, увеличенный на 1, а сами выбранные числа стирают. Так продолжают до тех пор, пока на доске не останется только одно число.

а) Какое наименьшее число может остаться на доске?

б) Какое наибольшее число может остаться на доске?


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
Завершить тестирование, свериться с ответами, увидеть решения.