А. Ларин. Тренировочный вариант № 314. (Часть C)
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.
Версия для печати и копирования в MS Word
а) Решите уравнение
б) Укажите корни этого уравнения, принадлежащие отрезку
На следующей странице вам будет предложено проверить их самостоятельно.
Основание ABCD призмы — трапеция с основаниями AB = 2CD.
а) Докажите, что плоскость проходит через середину бокового ребра
б) Найдите угол между боковым ребром и этой плоскостью, если призма прямая, трапеция ABCD прямоугольная с прямым углом при вершине B, а BC = CD и
На следующей странице вам будет предложено проверить их самостоятельно.
Решите неравенство
На следующей странице вам будет предложено проверить их самостоятельно.
Точка I — центр окружности, вписанной в треугольник ABC. Луч BI пересекает описанную около треугольника ABC окружность в точке N . Известно, что угол ABC равен 60°.
а) Докажите, что N — центр окружности, описанной около треугольника AIC.
б) Найдите радиус окружности, описанной около треугольника ABC, если известно, что IN = 1.
На следующей странице вам будет предложено проверить их самостоятельно.
Клиент положил в банк некоторую сумму денег. Через год, после начисления процентов, он добавил на свой счет сумму, составляющую 0,9 исходной, в результате чего остаток на счете стал равен 3,4 млн рублей. А еще через год, после начисления процентов, остаток на его счете увеличился в 2,2 раза по сравнению с исходной суммой. Какую сумму клиент положил в банк первоначально, если в конце каждого года банк
начислял один и тот же процент годовых?
На следующей странице вам будет предложено проверить их самостоятельно.
Найдите все значения параметра такие, что неравенство
не имеет решений.
На следующей странице вам будет предложено проверить их самостоятельно.
На доске выписаны все натуральные числа от 1 до 2014 без пропусков и повторений: 1, 2, 3, …, 2013, 2014. С выписанными на доске числами проделывают следующие операции: выбирают какие‐либо два числа и записывают на доске модуль их разности, увеличенный на 1, а сами выбранные числа стирают. Так продолжают до тех пор, пока на доске не останется только одно число.
а) Какое наименьшее число может остаться на доске?
б) Какое наибольшее число может остаться на доске?
На следующей странице вам будет предложено проверить их самостоятельно.