Известно, что квадратное уравнение x2 + px + q = 0 имеет два различных натуральных корня.
а) Найдите все возможные значения p, если q = 26.
б) Найдите все возможные значения q, если q + p = 72.
в) Найдите все возможные значения корней уравнения, если q2 − p2 = 2812.
а) По теореме Виета произведение этих корней равно 26, поэтому сами они равны 13 и 2 или 26 и 1. При этом откуда p = −15 или p = −27.
б) Получаем уравнение откуда
значит,
и
или наоборот. В любом случае
в) Заметим, что
Числа и
отличаются друг от друга на чётное число, поэтому они одной чётности, поэтому каждое из них делится на 2 и не делится на 4. Кроме того,
поэтому остаются такие варианты:
а) и
б) и
Рассмотрим первый случай:
Натуральными решениями второго уравнения являются пары чисел (4; 2) или (2; 4), которые не являются решениями первого уравнения. Поэтому этот случай не приводит к решениям.
Рассмотрим второй случай:
Всевозможные натуральные решения второго уравнения это (40; 2), (14; 4), (4; 14), (2; 40). Первому уравнению удовлетворяют только пары (14; 4) и (4; 14).
Ответ: а) −27 или −15; б) 148; в) 4 и 14.
----------
Частично дублирует задание 526680 из основной волны ЕГЭ 2019 года.

