Задания
Версия для печати и копирования в MS Word
Спрятать решение

Ре­ше­ние.

Функ­ция опре­де­ле­на на левая квад­рат­ная скоб­ка 0; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка . Найдём её про­из­вод­ную:

y' левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби x в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка минус 21.

Най­дем нули про­из­вод­ной:

 дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби x в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка минус 21=0 рав­но­силь­но x в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка =14 рав­но­силь­но x=196.

 

Опре­де­лим знаки про­из­вод­ной функ­ции и изоб­ра­зим на ри­сун­ке по­ве­де­ние функ­ции:

Ис­ко­мая точка ми­ни­му­ма x_min=196.

 

Ответ: 196.

Источник: ЕГЭ по ма­те­ма­ти­ке 27.03.2020. До­сроч­ная волна. Ва­ри­ант 2
Кодификатор ФИПИ/Решу ЕГЭ: