Пусть K(n) обозначает сумму квадратов всех цифр натурального числа n.
а) Существует ли такое трёхзначное число n, что K(n) = 181?
б) Существует ли такое трёхзначное число n, что K(n) = 180?
в) Какое наименьшее значение может принимать выражение 9K(n) − n, если n — трёхзначное число?
а) Такое число существует. Например, для числа имеем
б) Заметим, что для любого целого числа k число k2 либо делится на 4, если k чётно, либо даёт при делении на 4 остаток 1, если k нечётно. Значит, сумма квадратов всех цифр произвольного трёхзначного числа n может делиться на 4, только если квадрат каждой из его цифр делится на 4, то есть когда все его цифры чётны. Следовательно, если то все цифры числа
n чётны и либо либо
Значит, искомого числа n не существует.
в) Пусть где
— цифры. Тогда
Наименьшие возможные значения выражений и
где
— цифры, равны
и
соответственно и достигаются при
и
Значит,
При имеем
Следовательно, наименьшее значение, которое может принимать выражение
если n трёхзначное число, равно −277.
Ответ: а) Да; б) нет; в) −277.

