Задания
Версия для печати и копирования в MS Word
Тип 8 № 518952
i

На ри­сун­ке изоб­ражён гра­фик функ­ции y=f' левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка   — про­из­вод­ной функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка , опре­делённой на ин­тер­ва­ле (−2;11). Най­ди­те про­ме­жут­ки убы­ва­ния функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка . В от­ве­те ука­жи­те сумму целых точек, вхо­дя­щих в эти про­ме­жут­ки.

Спрятать решение

Ре­ше­ние.

Функ­ция, диф­фе­рен­ци­ру­е­мая на от­рез­ке [a; b], не­пре­рыв­на на нем. Если функ­ция не­пре­рыв­на на от­рез­ке [a; b], а её про­из­вод­ная по­ло­жи­тель­на (от­ри­ца­тель­на) на ин­тер­ва­ле (a; b), то функ­ция воз­рас­та­ет (убы­ва­ет) на от­рез­ке [a; b].

По­это­му про­ме­жут­ки убы­ва­ния функ­ции f(x) со­от­вет­ству­ют про­ме­жут­кам, на ко­то­рых про­из­вод­ная функ­ции не­по­ло­жи­тель­на, то есть от­рез­кам [−0,5; 2,5] и [4,5; 7,5]. Дан­ные от­рез­ки со­дер­жат целые точки 1, 2, 5, 6, 7, сумма ко­то­рых равна 21.

 

Ответ: 21.

Кодификатор ФИПИ/Решу ЕГЭ: