Задания
Версия для печати и копирования в MS Word
Тип 8 № 8057
i

На ри­сун­ке изоб­ра­жен гра­фик про­из­вод­ной функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка , опре­де­лен­ной на ин­тер­ва­ле  левая круг­лая скоб­ка минус 9; 2 пра­вая круг­лая скоб­ка . Най­ди­те про­ме­жут­ки убы­ва­ния функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка . В от­ве­те ука­жи­те сумму целых точек, вхо­дя­щих в эти про­ме­жут­ки.

Спрятать решение

Ре­ше­ние.

Функ­ция, диф­фе­рен­ци­ру­е­мая на от­рез­ке [a; b], не­пре­рыв­на на нем. Если функ­ция не­пре­рыв­на на от­рез­ке [a; b], а её про­из­вод­ная по­ло­жи­тель­на (от­ри­ца­тель­на) на ин­тер­ва­ле (a; b), то функ­ция воз­рас­та­ет (убы­ва­ет) на от­рез­ке [a; b].

По­это­му про­ме­жут­ки убы­ва­ния функ­ции f(x) со­от­вет­ству­ют про­ме­жут­кам, на ко­то­рых про­из­вод­ная функ­ции не­по­ло­жи­тель­на, то есть про­ме­жут­кам (−9; −7,5] и [−4,5; −1,5]. Дан­ные про­ме­жут­ки со­дер­жат точки −8, −2, −3, −4, сумма ко­то­рых равна −17.

 

Ответ: −17.

Кодификатор ФИПИ/Решу ЕГЭ: