СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Математика профильного уровня
≡ математика
сайты - меню - вход - новости


Задания
Версия для печати и копирования в MS Word
Задания Д6 C2 № 511479

В пра­виль­ной четырёхуголь­ной пи­ра­ми­де SABCD с ос­но­ва­ни­ем ABCD точка M — се­ре­ди­на ребра SA, точка K — се­ре­ди­на ребра SC. Най­ди­те угол между плос­ко­стя­ми BMK и ABC, если AB = 10, SC = 9.

Решение.

Проведём из точки B перпендикуляр BQ к MK, Q — середина MK. Точка Q является серединой высоты SO. Прямая MK параллельна прямой пересечения плоскостей, QBMK, OBMK. Следовательно, ∠QBO — линейный угол искомого угла. Очевидно, тогда,

Значит,

 

Ответ:


Аналоги к заданию № 485978: 486000 501045 507639 507705 507457 510649 511351 511430 511457 511479 Все