15-го января планируется взять кредит в банке на 39 месяцев. Условия его возврата таковы:
— 1-го числа каждого месяца долг возрастёт на r% по сравнению с концом предыдущего месяца;
— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
— 15-го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца.
Известно, что общая сумма выплат после полного погашения кредита на 20% больше суммы, взятой в кредит. Найдите r.
Пусть сумма кредита равна S. По условию, долг перед банком по состоянию на 15-е число должен уменьшиться до нуля равномерно:
Первого числа каждого месяца долг возрастает на r%. Пусть тогда последовательность размеров долга на 1-ое число каждого месяца такова:
Следовательно, выплаты должны быть следующими:
Всего следует выплатить
Общая сумма выплат на 20% больше суммы, взятой в кредит, поэтому
Ответ: 1.


Слишком запутанное решение. Зачем вводить дополнительную величину k?
Сумма долга S уменьшается ежемесячно на 1/39 его часть. Чтобы так произошло проценты должны выплачиваться следующим образом: 39/39Sr, 38/39Sr...1/39Sr.
Общая сумма выплат по процентам:
(39+38+37+...+1)/39Sr=0.2S (20%)
Решаем простое линейное уравнение с арифметической прогрессией, получаем r=0.01 (1%)