СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Математика профильного уровня
Математика профильного уровня
Cайты, меню, вход, новости


Задания
Версия для печати и копирования в MS Word
Задание 19 № 505570

За победу в шахматной партии начисляют 1 очко, за ничью ─ 0,5 очка, за проигрыш ─ 0 очков. В турнире принимают участие m мальчиков и d девочек, причём каждый играет с каждым дважды.

а) Каково наибольшее количество очков, которое в сумме могли набрать девочки, если m = 3, d = 2?

б) Какова сумма набранных всеми участниками очков, если m + d = 10.

в) Каковы все возможные значения d, если m = 7d и известно, что в сумме мальчики набрали ровно в 3 раза больше очков, чем девочки?

Решение.

а) Каждая из двух девочек могла выиграть оба раза у всех троих мальчиков, получив в сумме 6 очков. Сыграв две партии друг с другом, девочки распределили между собой ещё 2 очка. Всего очков.

б) Играя по две партии каждый с каждым, десять детей играют всего партий. В каждой партии вне зависимости от её исхода разыгрывается одно очко. Поэтому всего набрано 90 очков.

в) Всего детей было играя по две партии каждый с каждым они сыграли между собой партий и разыграли очков. Из них у мальчиков три четверти очков, а у девочек — одна четверть, то есть у девочек очков. Заметим, что если каждая девочка выиграла у всех мальчиков, то вместе девочки набрали максимум очков, а играя между собой, девочки распределили очков. Поэтому наибольшее количество очков, которое могли набрать девочки, равно Тем самым, имеем: Следовательно, девочек не могло быть больше одной.

Если девочка была одна, то мальчиков было семеро. Они сыграли 56 партий и разыграли 56 очков. Девочка набрала 14 очков, выиграв у каждого из мальчиков по две партии. Играя между собой, мальчики разыграли оставшиеся 42 очка.

 

Ответ: а) 14; б) 90; в) 1.

 

Приведём похожее решение.

а) Всего девочки играют 2 партии между собой и 12 партий против мальчиков (по 6 каждая). Поэтому максимальное суммарное число очков, которые они могут набрать, равно 2+12=14.

б) Если участников всего 10, то каждый играет с 9-ю другими участниками по два раза, значит, всего происходит 18 туров по 5 партий в каждом. В 90 партиях разыгрывается 90 очков, поэтому ответ 90.

в) Пусть девочек , а мальчиков В партиях между собой девочки набрали очков, а мальчики в партиях между собой набрали очков. Всего состоялось партий. Значит, партий между мальчиками и девочками состоялось Пусть девочки набрали в них x очков. Тогда получаем уравнение: , откуда или Ясно, что , отсюда , то есть или Понятно, что 0 — посторонний корень. Если девочка была одна, то мальчиков было 7, в случае, когда девочка выиграла у всех мальчиков по два раза, она набрала 14 очков. При этом мальчики сыграли между собой 42 партии и набрали 42 очка, например, сыграли все эти партии вничью или любым другим образом.


Аналоги к заданию № 505570: 508112 507244 Все

Источник: РЕШУ ЕГЭ — Предэкзаменационная работа 2014 по математике.
Раздел кодификатора ФИПИ/Решу ЕГЭ: Числа и их свойства, Числа и их свойства