СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Математика профильного уровня
Математика профильного уровня
Cайты, меню, вход, новости


Варианты заданий
Версия для печати и копирования в MS Word
1
Задание 19 № 514532

На доске написаны числа 2 и 3. За один ход два числа a и b, записанных на доске заменяется на два числа: a + b и 2a − 1 или a + b и 2b − 1.

Пример: числа 2 и 3 заменяются на 3 и 5, на 5 и 5, соответственно.

а) Приведите пример последовательности ходов, после которых одно из чисел, написанных на доске, окажется числом 15.

б) Может ли после 50 ходов одно из двух чисел, написанных на доске, окажется числом 100.

в) Сделали 2015 ходов, причём на доске никогда не было написано одновременно двух равных чисел. Какое наименьшее значение может принимать разность большего и меньшего из полученных чисел?


Аналоги к заданию № 514452: 514532 514742 Все

Источник: ЕГЭ по математике 06.06.2016. Основная волна. Вариант 412. Запад (C часть).
Раздел кодификатора ФИПИ/Решу ЕГЭ: Числа и их свойства

2
Задание 19 № 514742

На доске написаны числа 2 и 3. За один ход два числа a и b, записанные на доске, заменяются на два числа: или a + b и 2a − 1, или a + b и 2b − 1 (например, из чисел 2 и 3 можно получить либо 3 и 5, либо 5 и 5).

а) Приведите пример последовательности ходов, после которых одно из двух чисел, написанных на доске, окажется числом 13.

б) Может ли после 200 ходов одно из двух чисел, написанных на доске, оказаться числом 400?

в) Сделали 513 ходов, причём на доске никогда не было написано одновременно двух равных чисел. Какое наименьшее значение может принимать разность большего и меньшего из полученных чисел?


Аналоги к заданию № 514452: 514532 514742 Все

Источник: Задания 19 (С7) ЕГЭ 2016
Раздел кодификатора ФИПИ/Решу ЕГЭ: Числа и их свойства