Варианты заданий
Версия для печати и копирования в MS Word
1
Тип 19 № 514433
i

Три числа на­зо­вем хо­ро­шей трой­кой, если они могут быть дли­на­ми сто­рон тре­уголь­ни­ка.

Три числа на­зо­вем от­лич­ной трой­кой, если они могут быть дли­на­ми сто­рон пря­мо­уголь­но­го тре­уголь­ни­ка.

а)  Даны 8 раз­лич­ных на­ту­раль­ных чисел. Может ли ока­зать­ся. что среди них не най­дет­ся ни одной хо­ро­шей трой­ки?

б)  Даны 4 раз­лич­ных на­ту­раль­ных числа. Может ли ока­зать­ся, что среди них можно найти три от­лич­ных трой­ки?

в)  Даны 12 раз­лич­ных чисел (не­обя­за­тель­но на­ту­раль­ных). Какое наи­боль­шее ко­ли­че­ство от­лич­ных троек могло ока­зать­ся среди них?


Аналоги к заданию № 514433: 521404 Все


2
Тип 19 № 521404
i

Три числа назовём хо­ро­шей трой­кой, если они могут быть дли­на­ми сто­рон тре­уголь­ни­ка.

Три числа назовём от­лич­ной трой­кой, если они могут быть дли­на­ми сто­рон пря­мо­уголь­но­го тре­уголь­ни­ка.

а)  Даны 5 раз­лич­ных на­ту­раль­ных чисел. Может ли ока­зать­ся, что среди них не найдётся ни одной хо­ро­шей трой­ки?

б)  Даны 4 раз­лич­ных на­ту­раль­ных числа. Может ли ока­зать­ся, что среди них можно найти три от­лич­ных трой­ки?

в)  Даны 10 раз­лич­ных чисел (не­обя­за­тель­но на­ту­раль­ных). Какое наи­боль­шее ко­ли­че­ство от­лич­ных троек могло ока­зать­ся среди них?


Аналоги к заданию № 514433: 521404 Все