Варианты заданий
Версия для печати и копирования в MS Word
1
Тип 19 № 512404
i

Будем на­зы­вать четырёхзнач­ное число очень счаст­ли­вым, если все цифры в его де­ся­тич­ной за­пи­си раз­лич­ны, а сумма пер­вых двух из этих цифр равна сумме по­след­них двух из них. На­при­мер, очень счаст­ли­вым яв­ля­ет­ся число 3140.

а)  Су­ще­ству­ют ли два­дцать по­сле­до­ва­тель­ных четырёхзнач­ных чисел, среди ко­то­рых есть три очень счаст­ли­вых?

б)  Может ли раз­ность двух очень счаст­ли­вых четырёхзнач­ных чисел рав­нять­ся 2016?

в)  Най­ди­те наи­мень­шее про­стое число, для ко­то­ро­го не су­ще­ству­ет крат­но­го ему очень счаст­ли­во­го четырёхзнач­но­го числа.


Аналоги к заданию № 512404: 516406 516386 530830 Все


2
Тип 19 № 516406
i

Будем на­зы­вать четырёхзнач­ное число очень счаст­ли­вым, если все цифры в его де­ся­тич­ной за­пи­си раз­лич­ны, а сумма пер­вых двух из этих цифр равна сумме по­след­них двух из них. На­при­мер, очень счаст­ли­вым яв­ля­ет­ся число 3140.

а)  Су­ще­ству­ют ли два­дцать по­сле­до­ва­тель­ных четырёхзнач­ных чисел, среди ко­то­рых нет ни од­но­го очень счаст­ли­во­го числа?

б)  Может ли раз­ность двух очень счаст­ли­вых четырёхзнач­ных чисел рав­нять­ся 2016?

в)  Най­ди­те наи­мень­шее нечётное число, для ко­то­ро­го не су­ще­ству­ет крат­но­го ему очень счаст­ли­во­го четырёхзнач­но­го числа.


Аналоги к заданию № 512404: 516406 516386 530830 Все


3
Тип 19 № 516386
i

Будем на­зы­вать четырёхзнач­ное число очень счаст­ли­вым, если все цифры в его де­ся­тич­ной за­пи­си раз­лич­ны, а сумма пер­вых двух из этих цифр равна сумме по­след­них двух из них. На­при­мер, очень счаст­ли­вым яв­ля­ет­ся число 3140.

а)  Су­ще­ству­ют ли один­на­дцать по­сле­до­ва­тель­ных четырёхзнач­ных чисел, среди ко­то­рых ровно два очень счаст­ли­вых?

б)  Может ли раз­ность двух очень счаст­ли­вых четырёхзнач­ных чисел рав­нять­ся 2017?

в)  Най­ди­те наи­мень­шее про­стое число, для ко­то­ро­го не су­ще­ству­ет крат­но­го ему очень счаст­ли­во­го четырёхзнач­но­го числа.


Аналоги к заданию № 512404: 516406 516386 530830 Все


4
Тип 19 № 530830
i

Будем на­зы­вать четырёхзнач­ное число очень счаст­ли­вым, если все цифры в его де­ся­тич­ной за­пи­си раз­лич­ны, а сумма пер­вых двух из этих цифр равна сумме по­след­них двух из них. На­при­мер, очень счаст­ли­вым яв­ля­ет­ся число 3140.

а)  Су­ще­ству­ют ли де­сять по­сле­до­ва­тель­ных четырёхзнач­ных чисел, среди ко­то­рых есть два очень счаст­ли­вых?

б)  Может ли раз­ность двух очень счаст­ли­вых четырёхзнач­ных чисел рав­нять­ся 2015?

в)  Най­ди­те наи­мень­шее на­ту­раль­ное число, для ко­то­ро­го не су­ще­ству­ет крат­но­го ему очень счаст­ли­во­го четырёхзнач­но­го числа.


Аналоги к заданию № 512404: 516406 516386 530830 Все