А. Ларин. Тренировочный вариант № 322 (часть C).
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.
Версия для печати и копирования в MS Word
а) Решите уравнение
б) Укажите корни этого уравнения, принадлежащие промежутку
На следующей странице вам будет предложено проверить их самостоятельно.
В правильной шестиугольной призме АВСDEFА1B1C1D1E1F1 все ребра равны 1.
а) Докажите, что точки F и С равноудалены от плоскости ВЕD1.
б) Найдите расстояние между прямыми ЕD1 и FE1.
На следующей странице вам будет предложено проверить их самостоятельно.
Решите неравенство
На следующей странице вам будет предложено проверить их самостоятельно.
В прямоугольный треугольник АВС с катетами АС = 4, ВС = 3 вписана окружность с центром О, касающаяся сторон ВС, АС и АВ треугольника в точках R, Q, P соответственно.
а) Докажите, что AO · BO · CO = 10.
б) Найдите площадь треугольника PQR.
На следующей странице вам будет предложено проверить их самостоятельно.
Банк предоставляет кредит сроком на 10 лет под 19% годовых на следующих условиях: ежегодно заёмщик возвращает банку 19% от непогашенной части кредита и суммы кредита. Так, в первый год, заёмщик выплачивает
суммы кредита и 19% от всей суммы кредита, во второй год заёмщик выплачивает
суммы кредита и 19% от
суммы кредита и т. д. Во сколько раз сумма, которую выплатит банку заёмщик, будет больше суммы кредита, если заёмщик не воспользуется досрочным погашением кредита?
На следующей странице вам будет предложено проверить их самостоятельно.
Найдите все значения параметра a, при которых неравенство
выполнено при любом значении x.
На следующей странице вам будет предложено проверить их самостоятельно.
На доске написано 35 различных натуральных чисел, каждое из которых либо четное, либо его десятичная запись оканчивается на цифру 7. Сумма всех записанных на доске чисел равна 1135.
а) Может ли на доске быть ровно 31 четное число?
б) Могут ли ровно семь чисел на доске оканчиваться на 7?
в) Какое наибольшее количество чисел, оканчивающихся на 7, может быть на доске?
На следующей странице вам будет предложено проверить их самостоятельно.