На рисунке изображён график y = f '(x) — производной функции f(x), определённой на интервале (−3; 11). Найдите промежутки возрастания функции f(x). В ответе укажите длину наибольшего из них.
Функция, дифференцируемая на отрезке [a; b], непрерывна на нем. Если функция непрерывна на отрезке [a; b], а её производная положительна (отрицательна) на интервале (a; b), то функция возрастает (убывает) на отрезке [a; b].
Поэтому промежутки возрастания данной функции f(x) соответствуют промежуткам, на которых ее производная неотрицательна, то есть промежуткам (−3; −2], [2; 7] и [10; 11). Наибольший из них — отрезок [2; 7], длина которого равна 5.
Ответ: 5.

