Задания
Версия для печати и копирования в MS Word
Тип 15 № 654863
i

Ре­ши­те не­ра­вен­ство  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 конец дроби пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 25 минус 25 x пра­вая круг­лая скоб­ка мень­ше ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 конец дроби пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x в квад­ра­те минус 4 x плюс 3 пра­вая круг­лая скоб­ка плюс ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 конец дроби пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 7 пра­вая круг­лая скоб­ка .

Спрятать решение

Ре­ше­ние.

За­пи­шем ис­ход­ное не­ра­вен­ство в виде:

 ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 конец дроби пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 25 левая круг­лая скоб­ка 1 минус x пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка мень­ше ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 конец дроби пра­вая круг­лая скоб­ка левая круг­лая скоб­ка левая круг­лая скоб­ка 3 минус x пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 1 минус x пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка плюс ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 конец дроби пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 7 пра­вая круг­лая скоб­ка рав­но­силь­но
 рав­но­силь­но ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 конец дроби пра­вая круг­лая скоб­ка 25 плюс ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 конец дроби пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 1 минус x пра­вая круг­лая скоб­ка мень­ше ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 конец дроби пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 3 минус x пра­вая круг­лая скоб­ка плюс ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 конец дроби пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 1 минус x пра­вая круг­лая скоб­ка плюс ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 конец дроби пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 7 пра­вая круг­лая скоб­ка .

Не­ра­вен­ство опре­де­ле­но при  минус 7 мень­ше x мень­ше 1, по­это­му при  минус 7 мень­ше x мень­ше 1 не­ра­вен­ство

 ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 конец дроби пра­вая круг­лая скоб­ка 25 мень­ше ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 конец дроби пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 3 минус x пра­вая круг­лая скоб­ка плюс ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 конец дроби пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 7 пра­вая круг­лая скоб­ка

при­ни­ма­ет вид:

 25 боль­ше левая круг­лая скоб­ка 3 минус x пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 7 пра­вая круг­лая скоб­ка рав­но­силь­но 25 боль­ше 21 минус 4 x минус x в квад­ра­те рав­но­силь­но x в квад­ра­те плюс 4 x плюс 4 боль­ше 0,

от­ку­да x не равно минус 2. Учи­ты­вая огра­ни­че­ние  минус 7 мень­ше x мень­ше 1, по­лу­ча­ем:  минус 7 мень­ше x мень­ше минус 2;  минус 2 мень­ше x мень­ше 1.

 

Ответ: (−7; −2); (−2; 1).

Спрятать критерии
Критерии проверки:

Кри­те­рии оце­ни­ва­ния вы­пол­не­ния за­да­нияБаллы
Обос­но­ван­но по­лу­чен вер­ный ответ2
Обос­но­ван­но по­лу­чен ответ, от­ли­ча­ю­щий­ся от вер­но­го вклю­че­ни­ем точки −2,

ИЛИ

по­лу­чен не­вер­ный ответ из-за вы­чис­ли­тель­ной ошиб­ки, но при этом име­ет­ся вер­ная по­сле­до­ва­тель­ность всех шагов ре­ше­ния

1
Ре­ше­ние не со­от­вет­ству­ет ни од­но­му из кри­те­ри­ев, пе­ре­чис­лен­ных выше.0
Мак­си­маль­ный балл2

Аналоги к заданию № 526217: 654863 654934 Все

Классификатор алгебры: Не­ра­вен­ства пер­вой и вто­рой сте­пе­ни от­но­си­тель­но ло­га­риф­ми­че­ской функ­ции