Задания
Версия для печати и копирования в MS Word
Тип 13 № 526013
i

а)  Ре­ши­те урав­не­ние 2\log в квад­ра­те _0,75 левая круг­лая скоб­ка синус x пра­вая круг­лая скоб­ка плюс 3 ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 0,75 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка синус x пра­вая круг­лая скоб­ка минус 2=0.

б)  Най­ди­те все корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 2 конец дроби ;4 Пи пра­вая квад­рат­ная скоб­ка .

Спрятать решение

Ре­ше­ние.

a)  Пусть t= ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 0,75 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка синус x пра­вая круг­лая скоб­ка , тогда урав­не­ние при­мет вид

2t в квад­ра­те плюс 3t минус 2=0 рав­но­силь­но со­во­куп­ность вы­ра­же­ний t= минус 2,t= дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби . конец со­во­куп­но­сти .

Вернёмся к ис­ход­ной пе­ре­мен­ной:

 со­во­куп­ность вы­ра­же­ний ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 0,75 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка синус x пра­вая круг­лая скоб­ка = минус 2, ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 0,75 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка синус x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби конец со­во­куп­но­сти . рав­но­силь­но со­во­куп­ность вы­ра­же­ний синус x= левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус 2 пра­вая круг­лая скоб­ка , синус x= левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка конец со­во­куп­но­сти . рав­но­силь­но
 рав­но­силь­но со­во­куп­ность вы­ра­же­ний синус x= дробь: чис­ли­тель: 16, зна­ме­на­тель: 9 конец дроби , синус x= дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби конец со­во­куп­но­сти . рав­но­силь­но синус x= дробь: чис­ли­тель: ко­рень из 3 , зна­ме­на­тель: 2 конец дроби рав­но­силь­но со­во­куп­ность вы­ра­же­ний x= дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс 2 Пи k,x= дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 3 конец дроби плюс 2 Пи k, конец со­во­куп­но­сти . k при­над­ле­жит Z .

б)  С по­мо­щью чис­ло­вой окруж­но­сти отберём корни урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 2 конец дроби ;4 Пи пра­вая квад­рат­ная скоб­ка . По­лу­чим число  дробь: чис­ли­тель: 8 Пи , зна­ме­на­тель: 3 конец дроби .

 

Ответ: а)  левая фи­гур­ная скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс 2 Пи k, дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 3 конец дроби плюс 2 Пи k:k при­над­ле­жит Z пра­вая фи­гур­ная скоб­ка ; б)  дробь: чис­ли­тель: 8 Пи , зна­ме­на­тель: 3 конец дроби .

Спрятать критерии
Критерии проверки:

Кри­те­рии оце­ни­ва­ния вы­пол­не­ния за­да­нияБаллы
Обос­но­ван­но по­лу­че­ны вер­ные от­ве­ты в обоих пунк­тах.2
Обос­но­ван­но по­лу­чен вер­ный ответ в пунк­те а),

ИЛИ

по­лу­че­ны не­вер­ные от­ве­ты из-за вы­чис­ли­тель­ной ошиб­ки, но при этом име­ет­ся вер­ная по­сле­до­ва­тель­ность всех шагов ре­ше­ния пунк­та а) и пунк­та б).

1
Ре­ше­ние не со­от­вет­ству­ет ни од­но­му из кри­те­ри­ев, пе­ре­чис­лен­ных выше.0
Мак­си­маль­ный балл2

Аналоги к заданию № 525117: 525138 525392 526013 Все

Источники:
Классификатор алгебры: Урав­не­ния сме­шан­но­го типа
Методы алгебры: Вве­де­ние за­ме­ны
Кодификатор ФИПИ/Решу ЕГЭ: